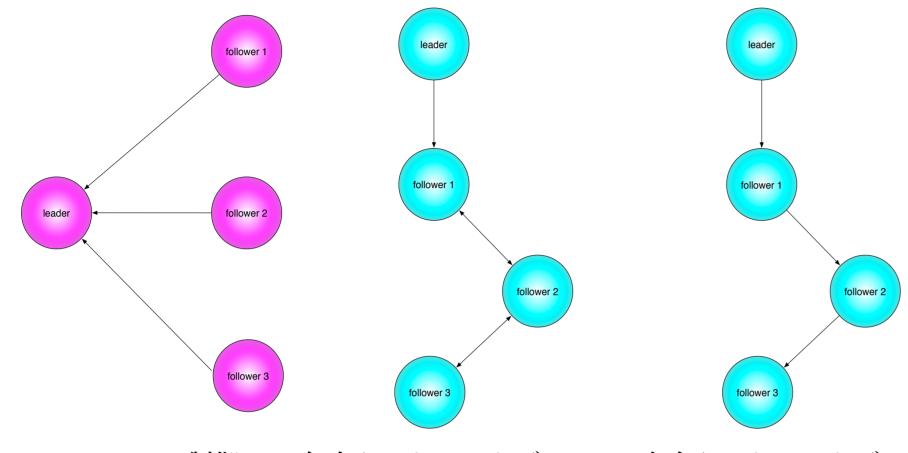
システム制御理論の研究 ~ 統計科学と制御科学の接点

義彦 宮里 運営企画本部 特任教授

【マルチエージェント系の数理とシステム制御理論】

- 生物の群行動の数理モデル (鳥や魚など)
- 知的交通システム(航空管制、スマートハイウェイ)
- ・人工衛星の軌道計画やランデブー問題
- 車両型ロボットの群制御、ロボカップサッカー、ロボットの協調動作
- ・マルチエージェント系の制御問題
 - ★様々の制御方式 ~ フォーメーション制御,作業の分担(配分), 交通制御、スケジューリング、協調制御、コンセンサス制御



無向ネットワークグラフ 有向ネットワークグラフ コンセンサス制御

- マルチエージェント系のコンセンサス (合意形成) 制御問題
 - ★制約のある通信環境における 重要な基本問題(安定化と追従制御)
 - ⋆フォーメーション制御問題に展開可能
 - ★適応制御やスライディングモード制御の利用
 - *不確定なエージェント、リアプノフ安定解析、ロバスト性解析
 - *特定の対象に限定 ~ 様々な対象への適用は不十分
 - *一般に追従誤差が残る **⇒ 漸近安定な追従特性の達成が目的**

【マルチエージェント系/情報構造/制御目的】

グラフ上のEuler-Lagrangeシステム(マルチエージェント系) (個々のエージェント:機械モデルとしてのEuler-Lagrangeシステム)

表 1. Euler-Lagrange システム(マルチエージェント系)

制御対象 $(i=1,\cdots,N)$

 $M_i(y_i)\ddot{y}_i + C_i(y_i, \dot{y}_i)\dot{y}_i = \tau_i$ (Euler-Lagrange (EL) システム) $y_i \in \mathbf{R}^n$ (出力), $\tau_i \in \mathbf{R}^n$ (制御入力) 回帰形式: $M_i(y_i)a_i + C(y_i, \dot{y}_i)b_i = Y_i(y, \dot{y}_i, a_i, b_i)\theta_i$

 $Y_i(y_i, \dot{y}_i, a_i, b_i): y_i, \dot{y}_i, a_i, b_i$ の既知の関数 (回帰行列)

 θ_i : 未知のパラメータベクトル

表 2. 無向ネットワークグラフ~ 情報構造の表現(双方向通信)

無向グラフ $\mathcal{G} = (\mathcal{V}, \mathcal{E}, A) \Leftrightarrow 双方向の通信$

 $\mathcal{V} = \{1, \dots, N\}$: ノード集合 \Rightarrow 各エージェント $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$: 枝集合 \Leftrightarrow エージェント間で相互通信が可能

重み付き隣接行列 $A = [a_{ij}] \in \mathbf{R}^{N \times N} \leftarrow \mathcal{E}$ より定義

グラフラプラシアン $L = [l_{ij}] \in \mathbf{R}^{N \times N} \Leftarrow A$ より定義

リーダー: y_0 フォロワー: $y_i (i = 1, \dots, N)$

 $M = L + \text{diag}(a_{10} \cdots a_{N0}) = [m_{ij}] \in \mathbf{R}^{N \times N} \iff L, a_{i0}$ より定義

ネットワークグラフの連結

リーダ情報の少なくとも一つのエージェントへの伝達

 $\Rightarrow M$ の正定性

表 3. 有向ネットワークグラフ~ 情報構造の表現(片方向通信)

有向グラフ $\mathcal{G} = (\mathcal{V}, \mathcal{E}, A) \Leftrightarrow 片方向$ の通信

 $\mathcal{V} = \{1, \dots, N\}$: ノード集合 \Rightarrow 各エージェント

 $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$: 枝集合 \Leftrightarrow $(i, j) \in \mathcal{E} \Leftrightarrow i$ からjへ情報が伝達

重み付き隣接行列 $A = [a_{ij}] \in \mathbf{R}^{N \times N} \leftarrow \mathcal{E}$ より定義

グラフラプラシアン $L = [l_{ij}] \in \mathbf{R}^{N \times N} \leftarrow A$ より定義

リーダー: y_0 フォロワー: $y_i (i = 1, \dots, N)$

 $M = L + \operatorname{diag}(a_{10} \cdots a_{N0}) = [m_{ij}] \in \mathbf{R}^{N \times N} \leftarrow L, a_{i0}$ より定義 リーダーを含む**有向グラフ** ⇒ リーダーを root として全域木を有する

 $\Rightarrow -M$ の**Hurwitz性** ($\neq M$ の正定対称性:無向グラフ)

表 4. 問題設定と制御目的

問題設定

入力 $\tau_i(t)$ と状態 $y_i(t)$ と $\frac{d}{dt}y_i(t)$ が自身 (i) から測定

制御目的

マルチエージェント系 (y_1, \dots, y_N)

各エージェントの未知の特性を推定

制御目的 ⇒ 限定情報/通信制約 (双方向通信 or 片方向通信)

リーダーフォロワー型のコンセンサス制御 $(y_i \rightarrow y_j \rightarrow y_0)$

目標信号(リーダー) $y_0(t)$

 $\ddot{y}_0(t) = f(y_0(t), \dot{y}_0(t), t)$ (有向グラフ, $f(y_0(t), \dot{y}_0(t), t)$ は既知)

 $\ddot{y}_0(t) = f(y_0(t), \dot{y}_0(t)) = \Omega_0(y_0, \dot{y}_0)\phi_0$ (無向グラフ, ϕ_0 は未知)

【適応 H_∞ コンセンサス制御(EL システム)

表 5. 適応 H_{∞} コンセンサス制御 (有向グラフの場合)

オブザーバの構成 $\Rightarrow \dot{y}_0$ の推定

 $\dot{\hat{z}}_i(t) = -\beta \sum_{j=1}^{N} c_{ij} \{ \hat{z}_i(t) - \hat{z}_j(t) \} - \beta c_{i0} \{ \hat{z}_i(t) - y_0(t) \} + f(y_i(t), y_i(t), t)$

制御則

$$\dot{y}_{ri}(t) = \hat{z}_i(t) - \alpha \sum_{j=0}^{N} a_{ij} \{y_i(t) - y_j(t)\}$$

 $s_i(t) = \dot{y}_i(t) - \dot{y}_{ri}(t)$

 $\tau_i(t) = Y_i(t)\theta_i(t) + v_i(t) \quad (Y_i(t) \equiv Y_i(y, \dot{y}_i, \ddot{y}_{ri}, \dot{y}_{ri}))$

 $v(t) = -\frac{1}{2}R^{-1}s \quad (s(t) \equiv [s_1(t), \dots, s_N(t)]^T)$

適応則

 $\hat{\theta}(t) = \Pr\left\{-\Gamma Y(t)^{\mathsf{T}} s(t)\right\}$ (Pr : Projection)

最適性と漸近特性

$$\begin{cases} R = \left(\frac{YY^{\mathsf{T}}}{\gamma^2} + K\right)^{-1} \\ q = \frac{1}{4}s^{\mathsf{T}}Ks \end{cases}$$

 $J(t) \equiv \sup_{d \in \mathcal{L}_2} \left[\int_0^t \{q + v^T R v\} d\tau + W_0(t) - \gamma^2 \int_0^t ||d||^2 d\tau \right]$

 $\int_0^t \{q + v^T R v\} d\tau + W_0(t) \le \gamma^2 \int_0^t ||d||^2 d\tau + W_0(0)$

 $d = (\theta - \theta)$

 $\lim_{t\to\infty}\tilde{z}(t)=0$

 $\lim_{t \to \infty} s(t) = 0$ $\lim_{t \to \infty} \tilde{y}(t) = \lim_{t \to \infty} \dot{\tilde{y}}(t) = 0$ $\text{cf.} \begin{cases} \|\tilde{y}\| \sim \frac{1}{\alpha\beta} \|\{(N_0 - \mathbf{1}) \otimes I\} \ddot{y}_0\| \\ \|\dot{\tilde{y}}\| \sim \frac{1}{\beta} \|\{(N_0 - \mathbf{1}) \otimes I\} \ddot{y}_0\| \end{cases}$ $\|\tilde{z}\| \sim \frac{1}{\beta} \|\{(N_0 - \mathbf{1}) \otimes I\}\ddot{y}_0\|$

表 6. 適応 H_{∞} コンセンサス制御 (無向グラフの場合)

オブザーバの構成 $\Rightarrow y_0$ の推定

$$\dot{\hat{z}}_{i}(t) = -\beta \sum_{\substack{j=1\\j\neq i}}^{N} c_{ij} \{\hat{z}_{i}(t) - \hat{z}_{j}(t)\} - \beta c_{i0} \{\hat{z}_{i}(t) - \dot{y}_{0}(t)\} + \Omega_{i}(y_{i}, \dot{y}_{i}) \hat{\phi}_{0i}(t)$$

制御則

$$\dot{y}_{ri}(t) = \hat{z}_i(t) - \alpha \sum_{\substack{j=0 \ i \neq i}}^{N} a_{ij} \{ y_i(t) - y_j(t) \}$$

 $s_i(t) = \dot{y}_i(t) - \dot{y}_{ri}(t)$

 $\tau_i(t) = Y_i(t)\theta_i(t) + v_i(t) \quad (Y_i(t) \equiv Y_i(y, \dot{y}_i, \ddot{y}_{ri}, \dot{y}_{ri}))$

 $v(t) = -\frac{1}{2}R^{-1}s \quad (s(t) \equiv [s_1(t), \dots, s_N(t)]^T)$

適応則

$$|\hat{\theta}(t)| = \Pr\left\{-\Gamma_1 Y(t)^{\mathsf{T}} s(t)\right\}$$
 (Pr : Projection)

 $\hat{\Phi}(t) = \Pr\left\{-\Gamma_2 \Omega(t)^{\mathsf{T}} (M_c \otimes I) \tilde{z}(t)\right\} \text{ (Pr : Projection)}$

最適性と漸近特性

$$\begin{cases} R = \left(\frac{YY^{\mathsf{T}}}{\gamma^2} + K\right)^{-1} \\ q = \frac{1}{4}s^{\mathsf{T}}Ks \end{cases}$$

 $\lim_{t\to\infty} \tilde{z}(t) = 0$

 $J(t) \equiv \sup_{d \in \mathcal{L}_2} \left[\int_0^t \{q + v^T R v\} d\tau + W_0(t) - \gamma^2 \int_0^t ||d||^2 d\tau \right]$ $\int_0^t \{q + v^T R v\} d\tau + W_0(t) \le \gamma^2 \int_0^t ||d||^2 d\tau + W_0(0)$

 $d = (\theta - \theta)$

 $\lim_{t\to\infty} s(t) = 0$

 $\lim_{t \to \infty} s(t) = 0$ $\lim_{t \to \infty} \tilde{y}(t) = \lim_{t \to \infty} \dot{\tilde{y}}(t) = 0$ $\lim_{t \to \infty} \tilde{z}(t) = 0$ $\operatorname{cf.} \begin{cases}
\|\tilde{y}\| \sim \frac{1}{\alpha\beta} \|\{(N_0 - \mathbf{1}) \otimes I\} \ddot{y}_0\| \\
\|\tilde{z}\| \sim \frac{1}{\beta} \|\{(N_0 - \mathbf{1}) \otimes I\} \ddot{y}_0\| \\
\|\tilde{z}\| \sim \frac{1}{\beta} \|\{(N_0 - \mathbf{1}) \otimes I\} \ddot{y}_0\|$