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1 Introduction

Consider the following feasibility problem.

find x (Feas)

subject to x ∈ (L+ a) ∩ K

�K: closed convex cone contained in some space E .
�L: subspace contained in E .
� a ∈ E .
Goal: We want to estimate dist (x, (L+ a) ∩ K) using dist (x,L+ a) and
dist (x,K).

2 Facial residual functions and error bounds

Proposition 2.1 (An error bound for when a face satisfying a CQ is known).
Let F � K be a face such that
(a)F ∩ (L+ a) = K ∩ (L+ a)
(b) (riF) ∩ (L+ a) ̸= ∅
Then, for every bounded set B, there exists κB > 0 such that

dist (x,K ∩ (L+ a)) ≤ κB(dist (x,F) + dist (x,L+ a)), ∀x ∈ B.

Idea:

1. Find F such that
(a)F ∩ (L+ a) = K ∩ (L+ a)
(b) (riF) ∩ (L+ a) ̸= ∅
Therefore, by Proposition 2.1

dist (x,K∩(L+ a)) ≤ κB(dist (x,F)+dist (x,L+ a)), ∀x ∈ B. (1)

2. Upper bound dist (x,F) using dist (x,K) and dist (x,L+ a).
3. Plug the upper bound in (1).

Definition 2.2 (1-FRF for K and z). A function ψK,z : R+ × R+ → R+
is called a one-step facial residual function (1-FRF) for K and z if
1.ψK,z is nonnegative, monotone nondecreasing in each argument and
ψ(0, α) = 0 for every α ∈ R+.
2. for x ∈ spanK and ϵ ≥ 0 we have

dist (x,K) ≤ ϵ, ⟨x, z⟩ ≤ ϵ ⇒ dist (x,K ∩ {z}⊥) ≤ ψK,z(ϵ, ∥x∥).

Theorem 2.3 (Error bound based on 1-FRFs). Let K be a closed convex
cone such that K∩ (L+ a) ̸= ∅. There are ℓ > 0, κ > 0, M > 0 such that

x ∈ B, dist (x,K) ≤ ϵ, dist (x,L+ a) ≤ ϵ,

implies
dist (x, (L+ a) ∩ K) ≤ κ(ϵ+ φ(ϵ,M)),

where φ = ψℓ−1♢ · · ·♢ψ1, if ℓ ≥ 2. If ℓ = 1, we let φ(ϵ, ∥x∥) := ϵ.
� ℓ is such that there is chain of faces ofK together with zi ∈ F∗i ∩L

⊥∩{a}⊥
such that

(L+ a) ∩ riFℓ ̸= ∅.
and F i+1 = F i ∩ {zi}⊥ for every i . This is obtained through facial
reduction [1, 5]

�The ψi ’s are 1-FRFs for F i , zi .

3 Examples

Definition 3.1 (Hölderian error bound).C1, C2 satisfy a uniform Hölderian

error bound
def⇐⇒ there exists γ ∈ (0, 1] such that for every bounded set

B there exist θB > 0, such that

dist (x, C1 ∩ C2) ≤ θB(dist (x, C1) + dist (x, C2))γ ∀ x ∈ B.

If γ = 1, we call it a Lipschitzian error bound.

Suppose that (Feas) is feasible.

�K: a symmetric cone (psd matrices, second order cone and etc), the
1-FRFs are of the form ψF ,z(ϵ, t) = κϵ + κ

√
ϵt ⇒ (Feas) satisfy an

uniform Hölderian error bound with exponent 2−ℓ, see [4]

� p-cone Kn+1p := {x = (x0, x̄) ∈ Rn+1 | x0 ≥ ∥x̄∥p}, 1-FRF:
ψKn+1p ,z(ϵ, t) = κϵ+ κ(ϵt)

αz

αz :=


1
2 if |z̄ |0 = n,
1
p if |z̄ |0 = 1 and p < 2,
min

{
1
2,
1
p

}
otherwise,

(Feas) satisfy an uniform Hölderian error bound with exponent αz , see [3].

3.1 The exponential cone case

Kexp :=
{
(x, y , z) | y > 0, z ≥ yex/y

}
∪{(x, y , z) | x ≤ 0, z ≥ 0, y = 0}.

Four types of error bounds are possible.　Depending on the the vector z,
besides Lipschitzian and Hölderian error bound with exponent 1/2 we have

� Entropic error bound: for every bounded set B, there exists κB > 0
such that for x ∈ B

dist
(
x, (L+ a) ∩Kexp

)
≤ κBg−∞(max(dist (x,L+ a), dist (x, Kexp))),

� Logarithmic error bound: for every bounded set B, there exists κB > 0
such that for x ∈ B

dist
(
x, (L+ a) ∩Kexp

)
≤ κBg∞(max(dist (x,L+ a), dist (x, Kexp))),

where g−∞(t) := −t ln(t), g∞(t) := − 1
ln(t)
, (for t small). See [2].
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