Lipschitz 連続的平滑化を用いた平滑化加速近接勾配法

田中未来 数理・推論研究系 数理最適化グループ, 統計的機械学習研究センター 准教授

1 導入

本研究では次の最適化問題を効率よく解くアルゴリズムを考える:

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}F(\boldsymbol{x})\coloneqq f(\boldsymbol{x})+h(\boldsymbol{x})+g(\boldsymbol{x}). \tag{1}$$

• $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$: L 平滑な凸関数.

● $g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$: 下半連続な真凸関数で prox_q の計算が容易.

• $h: \mathbb{R}^n \to \mathbb{R}$: h は平滑でなく, $prox_{h+g}$ の計算も重い.

●最適解集合 X* は非空.

この問題の ϵ 近似解は, 非平滑な h を平滑な h_{μ} で近似 (平滑化) した問題

 $\min_{\boldsymbol{x}\in\mathbb{R}^n}F_{\mu}(\boldsymbol{x})\coloneqq f(\boldsymbol{x})+h_{\mu}(\boldsymbol{x})+g(\boldsymbol{x})$

に対して加速近接勾配法 (FISTA) を適用することで得ることができる (Beck and Teboulle, 2012, Theorem 3.1). ただし, h_{μ} は h の $1/\mu$ 平滑 近似関数 (定義 1) で, μ の値と必要な反復回数は ϵ に依存して決まる.

定義 1. 凸関数 $h: \mathbb{R}^n \to \mathbb{R}$ が (α, β) 平滑化可能であるとは, 任意の $\mu > 0$ に対して微分可能な凸関数 $h_{\mu}: \mathbb{R}^n \to \mathbb{R}$ が存在して, 次が成り立 つことをいう: 式 (2) といわゆる prox-grad 不等式を用いると次の補題を得る.

補題 3. h_{μ_k} を h の $1/\mu_k$ Lipschitz 連続的平滑近似関数とし, 平滑化 近接勾配法によって生成された点列を $\{x_k\}$ とする. このとき, 任意の $x^* \in X^*$ と k = 1, 2, ... に対して次が成り立つ:

$$F(\mathbf{x}_{k}) - F^{*} \leq \frac{(1/2) \|\mathbf{x}_{0} - \mathbf{x}^{*}\|_{2}^{2} + \beta \sum_{l=1}^{k} t_{l} \mu_{l}}{\sum_{l=1}^{k} t_{l}}.$$
 (3)

本研究では $\mu_k = \mu_1 k^{-\nu}$ (0 < $\nu \le 1$) の場合について式 (3) の右辺を評価 した. オーダの意味で最良だった $\nu = 1/2$ の場合の結果を以下に示す.

定理 4. 補題 3 において $\mu_k = \mu_1 k^{-1/2}$ とする. このとき, 任意の $x^* \in X^*$ と k = 1, 2, ... に対して次が成り立つ:

 $F(\mathbf{x}_k) - F^* \leq \mathcal{O}(k^{-1/2} \log k).$

3 平滑化加速近接勾配法

詳細は割愛するが、本研究では FGM (Nesterov, 1983; Florea and Vorobyov,

1. 任意の $x \in \mathbb{R}^n$ に対して $h_\mu(x) \le h(x) \le h_\mu(x) + \beta \mu$.

2. h_{μ} は α/μ 平滑.

 h_{μ} を h に対する $1/\mu$ 平滑近似関数とよぶ.

複数の ϵ から定まる μ で平滑化した問題に FISTA を適用した結果 (図 1) から, μ を徐々に小さくするアルゴリズムの有効性が示唆される.

図 1: $F(\mathbf{x}_k) - F^*$ の対数プロット. (左: f が非強凸. 右: f が強凸.)

2 平滑化近接勾配法

前述の μ を徐々に小さくするアルゴリズムとして次のようなものを考える. アルゴリズム 1 問題 (1) に対する平滑化近接勾配法 (S-PGM) 1: 広義単調減少して 0 に収束する数列 { μ_k } を適当にとる. 2: 適当な初期点 $x_0 \in \text{dom } g$ をとる. 3: for $k \coloneqq 0, 1, \dots$ ▷ 適当な終了条件を満たしたとき停止. 4: h に対する $1/\mu_{k+1}$ 平滑近似関数 $h_{\mu_{k+1}}$ を構成. 5: $t_{k+1} \coloneqq 1/(L + \alpha/\mu_{k+1})$ とする.

 $s_{k+1} \coloneqq \operatorname{prox}_{t_{k+1}g}(\boldsymbol{x}_k - t_{k+1}\nabla(f + h_{\mu_{k+1}})(\boldsymbol{x}_k))$ と更新.

2019) と AMGS (Nesterov, 2013) という 2 種類の加速近接勾配法に基づ く平滑化加速近接勾配法の収束率の解析を行なった. 結果を表 1 に示す.

表 1: 収束率のオーダの比較.

アルゴリズム	f の強凸性	$\mu_k =$	$F(\boldsymbol{x}_k) - F^* \leq$
S-PGM	利用しない	$\mu_1 k^{-1/2}$	$O(k^{-1/2}\log k)$
S-FGM	利用しない	$\mu_1 k^{-1}$	$O(k^{-1}\log k)$
S-FGM	利用する	$(4\alpha/\sigma)k^{-2}$	$O(k^{-2}\log k)$
S-AMGS	利用しない	$\mu_1 k^{-1}$	$O(k^{-1}\log k)$
S-AMGS	利用する	$(2\alpha/\sigma)k^{-2}$	$O(k^{-2}\log k)$

4 計算機実験

あるスパース制御問題に対して適用した結果を図 2-3 に示す. 平滑化加速 近接勾配法 (特に強凸性を利用したもの)の有効性が示唆される.

図 2: $F(\mathbf{x}_k) - F^*$ の対数プロット. (左: fが非強凸. 右: fが強凸.)

このアルゴリズムの収束解析では $F_{\mu_{k+1}}(\mathbf{x}_{k+1}) - F_{\mu_k}(\mathbf{x}_k)$ を評価する. 平 滑近似関数の定義から直ちに従う $h_{\mu_{k+1}}(\mathbf{x}_{k+1}) - h_{\mu_k}(\mathbf{x}_k) \leq \beta \mu_k$ は緩い. 以下では平滑近似関数に課す条件を強めて解析を行なう.

定義 2. (α, β) 平滑化可能な関数 $h: \mathbb{R}^n \to \mathbb{R}$ が (α, β) Lipschitz 連続的 平滑化可能であるとは, 任意の広義単調減少して 0 に収束する平滑化パ ラメータの列 $\{\mu_k\}$ が与えられたとき, h に対するパラメータ (α, β) の $1/\mu_k$ 平滑近似関数 h_{μ_k} が存在して, 次が成り立つことをいう:

$$h_{\mu_{k+1}}(\boldsymbol{x}) - h_{\mu_k}(\boldsymbol{x}) \le \beta(\mu_k - \mu_{k+1}) \qquad (\boldsymbol{x} \in \mathbb{R}^n).$$
(2)

 h_{μ_k} を h に対する $1/\mu_k$ Lipschitz 連続的平滑近似関数とよぶ.

図 3: 計算時間. (左: *f* が非強凸. 右: *f* が強凸. SOCP: YALMIP–SeDuMi.)

謝辞:本研究は豊田充氏(都立大)との共同研究です.

The Institute of Statistical Mathematics