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A comparison of bootstrap methods for causality analyses of multivariate time series
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1 Introduction

There have been proposed many methods of linear connectivity detection. The
most popular method is the Granger causality test [1], which is for investigating
the flow of information between time series by comparing the variance of the
residuals of the Auro-Regressive(AR) model and AR model with eXogenous
input (ARX model). One of the other methods is to evaluate the difference in the
AIC between the AR and ARX models [2][3]. Another approach is Impulse
Response (IR) analysis to quantify causality and feedback mechanisms among
variables from Vector AR (VAR) model parameters. Although it is possible to
evaluate the significance of the results from the analyses mentioned above using
the asymptotic method, the bootstrap method, a more flexible method, is often
practical in real data analysis.

There are several bootstrap methods, such as Block Bootstrap (BB), Time-shift
Bootstrap (TB), AR-sieve Bootstrap (ARB), and FFT Bootstrap (FB)[4]. So far, it
has not been evaluated which combination of causal analysis and which
Bootstrap method has what degree of estimation performance, so this study
made those evaluations.

2 Causal analyses

4 Simulation
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3 Boot strap methods
Block Bootstrap (BB) Time Shift Bootstrap (TB)
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6 Conclusion

This study, using simulated data, practically demonstrated a
combination of causality analysis and bootstrap methods that can
properly estimate causal relations. The TS did not correctly detect
causal relation using any causality analysis appropriately. GC and
dAIC can be correctly estimated by BB, ARB, and FB.ARB and BB
with all block widths correctly estimated IRF.

These results indicate BB(40) and ARB have the best estimation
performance. However, because of the arbitrariness of the block
width in BB, ARB is superior because it is less arbitrary (model
order can be determined from real data using AIC, etc.).

Since GC cannot detect the temporal transition of the causal
relation and IRF has difficulty obtaining spatial information, the
best approach is to use both in a complementary manner.
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