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Abstract
Residual analysis is important and powerful model diagnostics and improvement. This research illustrates how to im-

prove the formulation of a zero-inflation hidden Markov model for tremor occurrences in the Kii region through constructing
corresponding residual statistics.
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Introduction and Motivation
Statistical modelling has been increasingly and widely used in many research fields. Associated statistical
inference techniques, such as model selection, specification, and evaluation, parameter estimation, and testing
goodness-of-fit have been developed. Among them residual analysis can be used to evaluate a model and
assess the goodness-of-fit without proposing unnecessary new models whose implementation may include
heavy programming and computation tasks (Zhuang, 2006; Baddeley et al., 2005). Residual analysis is also
helpful for understanding the advantages of a model even if its overall performance is not ideal.

For hidden Markov models, research on model checking for them is under developed and there is a need for
new methods. Recently, Buckby et al. (2020) developed a similar innovation based residuals by extending the
framework of residual analysis in Zhuang (2015). In Buckby et al. (2020), residual analysis based stochastic
reconstruction methods are proposed to verify whether the model formulation is proper for describing data
and how to modify the model formulation if it is not.

Hidden Markov model
An HMM is used to model time series data when the observations are dependent on an underlying unobserved
Markov chain. Observations are realised from the m members of a family of distributions, f (xt | St = i),
with i = 1, · · · ,m, where xt is the observed value at time t = 1, · · · , T , St is the state of the Markov chain at
time t and m is the finite number of states. The simplest HMM satisfies the conditions,

P (St = st | S1 = s1, · · · , St−1 = st−1) = P (St = st | St−1 = st−1) (1)

and
f (xt | x1, · · · , xt−1, S1 = s1, S2 = s2, · · · , St = st) = f (xt | St = st) (2)

Innovation based residual analysis
In an HMM, the expectation and pdf of Xt, given the previous observations are, respectively,

E [Xt | Ht] := E [Xt | X1, · · · , Xt−1] =

m∑
i=1

∑m
k=1 αt−1(k) ΓkiE[Xt | St = i]∑m

k=1αt−1(k)
, (3)

f (xt | Ht) := f (xt | X1, · · · , Xt−1) =

m∑
i=1

∑m
k=1αt−1(k) Γkif (Xt | St = i)∑m

k=1αt−1(k)
, (4)

where αt(k) is the forward probability defined by

αt(k) := P (X1, · · · , Xt, St = k). (5)

Details for calculating forward and backward probabilities within the EM algorithm can be found in Zucchini
and MacDonald (2009).

Using the above expectation, the predictive residual with a predictable function h(t, x), where h is a pre-
dictable function of t for every fixed x, becomes,

Rn :=

n∑
t=1

(h(t,Xt)−
∫
h(t, xt)f (xt | Ht) dxt. (6)

If h(t, x) = h(t)x, the above formula becomes the predictive residual proposed in Buckby et al. (2020)

Rn =

n∑
t=1

(h(t)Xt − h(t)E[Xt | Ht]). (7)

The exvisive residuals can be defined in a similar way to the predictive residuals. That is,

E [Xt | Et] := E [Xt | X1, · · · , Xt−1, Xt+1, · · · , XT ] =

m∑
i=1

∑m
k=1αt−1(k) ΓkiE[Xt | St = i] βt(i)∑m

k=1αt−1(k) Γki βt(i)
(8)

f (xt | Et) :=

m∑
i=1

∑m
k=1αt−1(k) Γki f (xt | St = i) βt(i)∑m

k=1αt−1(k) Γki βt(i)
(9)

where βt(i) = P (Xt+1, · · · , XT | St = i) is the backward probability. Given a function h(t, x) which is
exvisible as a function of t for every x, the exvisible residual becomes

Re
n :=

n∑
t=1

[
h(t,Xt)−

∫
h(t, xt) f (xt | Et) dxt

]
. (10)

If h(t, x) = xh(t), where h(t) is an exvisible function, the above residual becomes the form proposed by
Buckby et al. (2020)

Re
n =

n∑
t=1

(ĥ(t)Xt − ĥ(t) E[Xt | Et]). (11)

It is easy to see E[Rn] = 0 and E[R
p
n] = 0.

Zero-inflation HMMs for tremors
Model formulation The HMM example is the zero-inflation model used by Wang et al. (2018) for modelling
the non-volcanic tremor activity in the Kii region of Japan. Nonvolcanic tremor is a chain of low frequency
seismic activity originating in a subduction zone. Tremor was first detected in the Nanaki subduction zone of
Japan by Obara (2002). Modelling nonvolcanic tremor activity is of interest because it associated with slow
slip events. The occurrence of tremor and their locations are detected each hour by using a high-sensitivity
seismograph network.

In the HMM in Wang et al. (2018), the observation Xt at time t is from a space of {0} (null events) and
{1}×R2 (tremors and locations). Null events are indicated by Zt = 0. The joint emission distribution, which
belongs to so-called zero-inflation distribution, for each state at each time is given by

f (yt, zt | St = i) = (1− pi)1−zt
(
pi

1

2π|Σi|1/2
exp

[
−1

2
(yt − µi)TΣ−1

i (yt − µi)
])zt

(12)

where µi = E[Yt | Zt = 1, St = i],Σi = Var[Yt | Zt = 1, St = i]. The hidden states, St, take value from
1 to m. The model was fitted using the EM algorithm for different numbers of states. A 17 state model was
used for the Kii region (Figure 1). Three types of tremor segments can be classified according to the results:
episodic, weak concentration, and background.

Residual analysis To verify the emission distribution, with each data point being weighted by

ϕit := P (St = i|Y1, · · · , YT , Z1, · · · , ZT ) =
αt(i) βt(i)∑m
k=1αt(k) βt(k)

,

consider the following density function

f̃ (y | S = i, Z = 1) ∝
T∑
t=1

ϕitI(yt ∈ (y −∆y, y + ∆y)) I(Zt = 1), (13)

where ∆y is a fixed arbitrary small increment in the value of y, I is the indicator function. By equation (),

f̃ (y | S = i, Z = 1) ≈ f (yt | St = i, Zt = 1) =
1

2π|Σi|1/2
exp

[
−1

2
(yt − µi)TΣ−1

i (yt − µi)
]
, (14)

That is, f̃ (y | S = i, Z = 1) is a reconstructed version of f (yt | St = i, Zt = 1). Figure 2 plots the recon-
structed densities for States 1, 2, 4, and 5, in the form of heat-map, and the corresponding densities in the
fitting results are superposed in contour lines. However, the heat-maps indicate the reconstructed density are
bimodal, indicating that BIC might have selected fewer number of states.

Figure 1: (c.f. Buckby et al., 2020) The fitted 17 state model for nonvolcanic tremors in the Kii region. Observations are classified
into different spatiotemporal states represented by different colors. Each state has a unique probability of tremor occurrence.

Figure 2: (c.f. Buckby et al., 2020) Reconstructed density functions (heatmaps) for tremor locations for (a) state 1, (b) state 2,
(c) state 3, and (4) state 5, and their corresponding densities (contour lines) obtained from fitting the model to data with an EM
algoritm.

Summary
Based on the theory of residual analysis, the stochastic reconstruction technique for hidden Markov models
is helpful for us to find a proper direction in which to improve on the model formulation, in a data-driven
manner.
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