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Introduction Adam-based parameter correction term

Motivation: To improve robustness and efficiency for estimating the * From the analogy of Adam(Adaptive Moment Estimation)[2], the

state and time-varying parameters in nonlinear high-dimensional parameter correction term g can be chosen as follows:
systems. D . .
' gt =ml/ /v?, mi' =m'/(1—p), v =v'/(1-p),

Difficulty: Typical state augmentation techniques tend to fail to detect ,
Y- Jb J . where m and vare momentum and norm of the gradient of the loss

parameter changes unless there are enough correlations.

, . o . function as following equation, respectively:
Solution: Introduce correlated perturbation and use an efficient particle

filter “IEWPF” [1] combined with adaptive moment estimation (Adam [2]) mi =uml '+ A - VL, v =pv}t+ (1 - p)(VLY).

based optimization technique from machine learning.
P . J Note that the hyper-parameters 1 and p control the decay rates of

MethOdS these moving averages. The loss function £ can be expressed using the
log-likelihood at the last observation y as follows:

LE(6) = =2In [p(y"|x] ™, 6772)]
T
o< (ym = Hf(,617)) (HQHT + R)™ (y" — Hf (I, 6772)).
Case study : Linear model (N; independent systems)

Linear models are useful for comparison with analytical solutions before

State augmentation with correlated perturbation
Time evolution of state in augmented state-space model can be written

: (5n) = (f (xng_;'jn_l)) + ([;Z) B~N(0.Qg). n~N(0,Qy).

By using Taylor series expansion:

of

FOx™ 1,0 1) = f(x™1,0"2) + — ("1 — 9" 2), validating with nonlinear high-dimensional models. Consider A,
| | | 00 independent linear model equation with additive parameters, and
time evolution can be approximated as of observations for twin experiments:
-1 gn-2 -1 -
A 4 CA R T )= (90 + (55
0 gn—2 4 pn-1 on=1 o2 0 ’
_ (f(x"—l, 9"‘2)) + B yr= x4+ wh, B"~N(0,Q™), w~N(0,R),
gn—2 ’ /af afT of where X (=1,...N) and 6, (m=1,...,3) are the state variables and
where . 3 3 %Qn 39 + Qp %Qn parameters, respectively. In the following experiments, the true model
B"~N(0,Q™ ), Q= ofT : error is set to 0 and observations yis generated with observation error
Qn == Q, / whose covariance matrix is R=0.01. For the assimilation, we choose
: : : modael error whose covariance matrix 1s Qn=0.04 ana opservation error
08 del h i ix is Q;=0.04 and observati
Combination of IEWPF and parameter correction whose covariance matrix is R=0.01. The parameter perturbations are

The Implicit Equal-Weights Particle Filter (IEWPF) [1] can avoid filter sampled from pdf N(O, 1E-4)

degeneracy by using a proposal density which the weight of each
particle can be equal to the target weight. The method mainly contains

Evaluation of the shape of the posterior pdf (A, =100)

two procedures dependent on the observation: (1) state and parameter We conduct 100 independent data assimilation runs including 3
update by IEWPF at the observation step, and (2) parameter correction parameters for 5000 time steps with 20 particles, and compare them
with proposal density in the next step after observation. with the results of using the Kalman filter (KF), in order to evaluate the
(1) At observation step: shape of the posterior pdf. |
| o | — «F 100% o; > 1 50% a; > 1 0% a;>1  Fig.2.
« Compute parameter differentiation using model and parameter IEWPF | Comparison of
perturbation, and generate augmented covariance matrix. PDF of | the posterior
« Perform forecast using model transition and apply IEWPF to both variable ) pdf between
variables and parameters. The augmented state sampled from T P R KF.and I[EWPF
posterior distribution can be described as : using selected
L f (xn—l 9?1—2) PDF of j | : scalar o at
< nl_1> = < lgnizl ) +K(y"—Hf (x1,0]"2)) + ail/zpl/zfi , parameter | | /\ different
0; i S ==« percentages.
°I - ' - where K is Kalman gain and ais
L . a scalar. Note that a need to be — KF At 0 (IEWPF) At 1 (IEWPF) At 1 (IEWPF+Adam) F|g 3
. % chosen to satisfy equal weights T N ] Dependency
- o for all particles. PDF of . of different
; P oem - ;;‘:h-_,_-' & o variable Ho 101 Ca
&e 3 5.“% ;'H‘_I‘ 3"’,T_..U 3 :K*Eizi}ﬁ;i}ﬁ C(l > 1 :Z ZZ aSSImllatlon
IO A P Fig.1. An example of an analytical o e e e s ntaryals At 0
2f s :* K solution[1] of arduring sequential : ) (every step),
N g a; = estimation using a linear model. PDF oft 4 j | At 1 (every
- As detailed in Case study.) Parameter : : ther st
L e . <, K o 0 other step).
opce=t ,:‘ — ::“ - L a; <1 Different colors or marks indicate R R
Time-steps each particle (20 in total). COﬂC'USlOn
(2) The next step after observation: The proposed method successtully avoid filter degeneracy and

the posterior pdf is consistent with that of KF at appropriate
selection of a. Furthermore, the parameter correction has
capability to adjust the distribution of parameters.

« Draw samples from the proposal transition density g, instead of the
original transition density po.

q(o™]o7 ", y") = N(0]" — Ag{", Qy) . g7 € VLT,
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