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Introduction

Motivation: To improve robustness and efficiency for estimating the 
state and time-varying parameters in nonlinear high-dimensional 
systems.

Difficulty: Typical state augmentation techniques tend to fail to detect 
parameter changes unless there are enough correlations.

Solution: Introduce correlated perturbation and use an efficient particle 
filter “IEWPF” [1] combined with adaptive moment estimation (Adam [2]) 
based optimization technique from machine learning. 

Methods
State augmentation with correlated perturbation
Time evolution of state in augmented state-space model can be written 
as

By using Taylor series expansion:

time evolution can be approximated as

where

Combination of IEWPF and parameter correction

The Implicit Equal-Weights Particle Filter (IEWPF) [1] can avoid filter 
degeneracy by using a proposal density which the weight of each 
particle can be equal to the target weight. The method mainly contains 
two procedures dependent on the observation: (1) state and parameter 
update by IEWPF at the observation step, and (2) parameter correction 
with proposal density in the next step after observation. 

(1) At observation step:

• Compute parameter differentiation using model and parameter 
perturbation, and generate augmented covariance matrix.

• Perform forecast using model transition and apply IEWPF to both 
variables and parameters. The augmented state sampled from 
posterior distribution can be described as

(2) The next step after observation:

• Draw samples from the proposal transition density q, instead of the 
original transition density p. 

where λ is a scalar factor and g represents the term that corrects the 
parameter q so that the loss function L becomes smaller.
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Adam-based parameter correction term

• From the analogy of Adam（Adaptive Moment Estimation）[2], the 

parameter correction term g can be chosen as follows:

where m and v are momentum and norm of the gradient of the loss 

function as following equation, respectively:

Note that the hyper-parameters m and r control the decay rates of 

these moving averages. The loss function L can be expressed using the 

log-likelihood at the last observation y as follows:

Case study : Linear model (Nj independent systems)

Linear models are useful for comparison with analytical solutions before 
validating with nonlinear high-dimensional models. Consider Nj

independent linear model equation with additive parameters, and 
observations for twin experiments:

where xj (j=1,…,Nj) and qm (m=1,…,3) are the state variables and 

parameters, respectively. In the following experiments, the true model 
error is set to 0 and observations y is generated with observation error 
whose covariance matrix is R=0.01. For the assimilation, we choose 
model error whose covariance matrix is Qh=0.04 and observation error 
whose covariance matrix is R=0.01. The parameter perturbations are 
sampled from pdf N(0, 1E-4).

Evaluation of the shape of the posterior pdf (Nj =100)

We conduct 100 independent data assimilation runs including 3 
parameters for 5000 time steps with 20 particles, and compare them 
with the results of using the Kalman filter (KF), in order to evaluate the 
shape of the posterior pdf.

Conclusion
The proposed method successfully avoid filter degeneracy and 

the posterior pdf is consistent with that of KF at appropriate 

selection of α. Furthermore, the parameter correction has 
capability to adjust the distribution of parameters.

where K is Kalman gain and α is 
a scalar. Note that α need to be 
chosen to satisfy equal weights 
for all particles.

Fig.1. An example of an analytical 
solution[1] of α during sequential 
estimation using a linear model. 
(As detailed in Case study.)
Different colors or marks indicate 
each particle (20 in total).

Fig.2.
Comparison of 
the posterior 
pdf between 
KF and IEWPF 
using selected 
scalar α at 
different 
percentages.

Fig. 3. 
Dependency 
of different 
assimilation 
interval: Δt 0 
(every step), 
Δt 1 (every 
other step).
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