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Summary

We address the problem of distinguishing cause

from effect in bivariate setting.

Train non-parametric and non-additive

causal models on cause-effect pairs,

implemented by neural network

Build Causal Mosaic: a causal pair’s

mechanism is treated as an ensemble

mixture of similar mechanisms

Contributions:

1. Two novel cause-effect inference rules with

identifiability proofs

2. An ensemble framework that works for real

world datasets with only limited labeled

pairs

3. A neural network structure designed for

causal-effect inference

Problem Setting

We focus on bivariate cases, where there are

only two possibilities: either X1 or X2 is the di-

rect cause of the other, as shown in the figure:
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Figure 1. Causal graphs of bivariate SCMs

Their structural causal models (SCMs) are the fol-

lowing (1) for X1 → X2, and (2) for X2 → X1.

X1 = f1(E1), X2 = f2(X1, E2) (1)

X1 = f1(X2, E1), X2 = f2(E2) (2)

Intuition

Systems that seem to have different mecha-

nisms can actually share the samemechanism.
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Figure 2. Artificial causal pairs sharing same mechanism.

Learning Shared Mechanism

Theorem 1 (Time-Contrastive Learning (TCL) on

causal pairs). (informal)

A1. Causal pairs X (P ) := {Xp}P
p=1, share

SCM Xp = f(Ep), exponential family distribu-

tion pEi,p
(e) = exp[Ti(e)ηi(p) − A(ηi(p))].

A2. Parameters {ηi(p)} have enough variability.

A3. Train a multilayer perceptron (MLP) h, with
a final softmax layer to classify all sample points

of the pairs, with pair index used as class label.

Then, we can identify (recover) the sufficient

statistics by T(Ep) = hICA(Xp), that is, h(Xp)
followed by linear ICA.

Separation of Training and Testing

Corollary 1 (Transferability of TCL). (informal)

A1 & A2. Training pairs X tr(P ), testing pair Xte

with the same f and T as X tr(P ), different ηi.

A3. All possible values of testing pair are seen in

training pairs.

A4. Learn h on X tr(P ) as in A3 of Theorem 1.

Then, we have T(Ete) = hICA(Xte).
Intuitively, after we successfully learned TCL h,
we can re-use it to analyze other unseen pairs

that have the same SCM and sufficient statistics

as the training pairs.

Inference Algorithm

Algorithm 1: Inferring causal direction

input : σ(X tr(P )), σ(Xte), Directiontr,

align, inferule
output: Causete

Align training set, exploiting Directiontr:

X al(P ) = align(σ(X tr(P )), Directiontr)
Learn TCL h on X al(P )
foreach α = α0, α1 do

(C1, C2)T
α = hICA(X te

α(1), X te
α(2))

Run inference rule:

Causete = inferule(Cα0
, Cα1

, σ(Xte))

Identifiability Result

Theorem 2 (Identifiability by independence of

hidden components) In Algorithm 1, let:

Directiontr = {cp}p=P
p where cp ∈ {1, 2} is the

cause index: X tr
cp,p

→ X tr
3−cp,p

,

align = {X tr
cp,p

, X tr
3−cp,p

}p=P
p ,

inferule = α∗(1), α∗ = argmax
α∈{α0,α1}

dindep(Cα),

dindep measures degree of independence.

And assume:

A1. Causal Markov assumption and causal

faithfulness assumption hold for data gener-

ating SCMs and analysis procedure except for

a realized nonlinear ICA.

A2. X tr(P ) and Xte satisfy Corollary 1.

Then, the inferule defined above (inferule1
afterwards) identifies the true cause variable.

Asymmetric MLP

Proposition 1 (Inverse of bivariate SCM). For

any analyzable SCM as shown in (1), denote the

whole system X = f(E), if the Jacobian matrix of

f is invertible, then f1 is invertible.
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Figure 3. Inverse bivariate analyzable SCM (left) and the

indicated MLP structure (right).

Experiments
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Figure 4. Performance on artificial data.

Table 1. Accuracy (%) on TCEP (real-world benchmark).

ANM IGCI RECI NCC OURS

52.5/52.0 60.4/60.8 70.5/62.8 51.8/56.9 81.5±4.1/83.3±5.2

Take-home Message

“Mosaic” view: real-world causal systems are

diverse, so we should not fit all the different

systems at once; instead, study at a time a

small number of them that share common as-

pects, and then build a whole picture.

Our Solution

S: the set of all labeled causal pairs we have at

hand, cs: the true cause index for s ∈ S.

Problem of diversity: it is unlikely that most

training pairs have same SCM and in same ex-

ponential family distribution (A1 of Theorem 1).

Solution:

Random training of TCLs {hn}N
n=1:

1. Train a large number (N ) of TCLs on sets of

randomly chosen small number of pairs

{Tn}N
n=1

2. On each Tn, we train MLP M times with

randomly chosen hyperparameters

Select TCLs by training and validation accuracy:

1. For each t in Tn, use hICAn, run line 3–5 of

Algorithm 1 on t, get inferred direction ĉt,

training accuracy Taccn = |{t : ĉt = ct}|/|Tn|
2. For each l in S \ Tn, as step 1., get validation

accuracy V accn(l) for hn on (S \ Tn) \ {l}
3. For each s and each n, add n to selected

index set TSRs for s, if s 6∈ Tn and

Taccn > ThreT and V accn(s) > ThreV

Build a whole picture by ensemble method:

1. For each s and each n in TSRs, infer

Directionns on hn, by Algorithm 1

2. Calculate weighted prediction

Scores = ∑
n∈TSRs

wnwnsDirectionns

3. wn: how well the training pairs Tn fit

together, by the average dindep(hICAn(.))
on Tn

4. wns: pair-specified weight, by the

dindep(hICAn(.)) for a testing pair s




