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Background
Searching for items like real estate, movies, or music is a laborious process. Because of the enormous number of things and their high-dimensional properties, 
the users can only understand their preference gradually and spend a very long time finding the preferable one. Therefore interactive recommender system is 
getting a lot of attention to solve such problems [Takehara 2017]. The system has to capture a user's preference and recommend items that the user might like.

Issues & Challenges
One of the most crucial challenges is scaling Bayesian Optimization (BO) to high dimensions. Despite recent progress, BO is limited to moderate dimensions, 
works well in around 10 ~ 15 parameters. But, for example, in the real estate domain, the item's dimension will be more than 100. There are two main parts to 
make the BO scalable in the above algorithm. Identifying low-dimensional structure for Step2 and fast algorithm to update acquisition function for Step4 are 
keys.

Related Work

Problem Settings
We consider user's preference as a block-box function and maximize it as 
little function evaluation as possible.

x* = argmaxx f(x)
To optimize the black-box function, we use the framework of Bayesian 
Optimization . 

The input x means properties of an item. It consists of categorical variables 
h and continuous variables z, x = [h, z] . h = [h1, ..., hc], each variable hj ∈ 
{1, ..., Nj} is one of Nj different values. z is a d-dimensional hypercube Z. 
We can observe user's reaction y which is one of ordered set {0, ..., Ny-1}, 
for example, 0: no reaction, 1: viewed, and 2: bought.

Bayesian Optimization

Input: A black-box function f, observation data D0, 
           maximum number of iteration T.
Output : The best recommendation xT = [h, z] .

1. for t = 0, 1, ..., T do
2.     xt+1 = argmaxx u(x|Dt)  # u(.) : acquisition function
3.     Dt+1 = Dt ∪ {(xt+1, f(xt+1))} # Acquire next data point
4.     update u(x|Dt+1)  # update acquisition function
5. end for

[Ru 2020] is similar to the above problem settings, but low-dimensional 
structure identification is not discussed. 

There are some approaches to identify low-dimensional structures. [Wang 
2013] and [Djolonga 2013] use a projection from high-dimensional space to 
low-dimensional subspace, model the original function over the 
low-dimensional space using GP, and optimize the surrogate function. (Fig 1)

 [Rolland 2018] decomposes a high-dimensional function as a sum of 
lower-dimensional functions on subsets of the variables. They defined a 
learning algorithm of dependency graph structure among variables based on 
Gibbs sampling. (Fig 2)
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Fig 1:  This function has an active dimension x1. Left is the original 
function over a high dimension, right is the surrogate function over a 
lower dimension.
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Fig 2:  If variables x consists of x1, x2, x3, x4, x5 and its dependency 
graph structure is above then f(x) is decomposed to f(x1, x2, x3) + f(x3, 
x4) + f(x5) .
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