α -Geodesical Skew Divergence

木村 正成 総合研究大学院大学 統計科学専攻 博士課程(5年一貫制)3年

1 Skew divergence

Definition 1. (Skew divergence) The skew divergence $D_S^{(\lambda)}[p||q] : \mathcal{P} \times \mathcal{P} \rightarrow [0, \infty]$ is defined between two Radon–Nikodym densities p and q of μ -absolutely continuous probability measures by

$$D_{S}^{(\lambda)}[p\|q] \coloneqq D_{KL}[p\|(1-\lambda)p + \lambda q] = \int_{\mathcal{X}} p \ln \frac{p}{(1-\lambda)p + \lambda q} d\mu,$$

where $\lambda \in [0, 1]$.

2 α -geodesic

Definition 2. (*f*-interpolation) For any $a, b \in \mathbb{R}$, $\lambda \in [0, 1]$ and $\alpha \in \mathbb{R}$, *f*-interpolation is defined as

$$m_f^{(\lambda,\alpha)}(a,b) = f_\alpha^{-1} \Big((1-\lambda) f_\alpha(a) + \lambda f_\alpha(b) \Big), \tag{1}$$

where

$$f_{\alpha}(x) = \begin{cases} x^{\frac{1-\alpha}{2}} & (\alpha \neq 1) \\ \ln x & (\alpha = 1) \end{cases}$$
(2)

3.1 Properties

Proposition 6. (Non-negativity of the α -geodesical skew divergence) For $\alpha \geq -1$ and $\lambda \in [0, 1]$, the α -geodesical skew divergence $D_{GS}^{(\alpha, \lambda)}[p||q]$ satisfies the following inequality:

$$D_{GS}^{(\alpha,\lambda)}[p\|q] \ge 0.$$
(6)

Proposition 7. (Monotonicity of the α -geodesical skew divergence with respect to α) α -Geodesical skew divergence satisfies the following inequality for all $\alpha \in \mathbb{R}, \lambda \in [0, 1]$.

$$D_{GS}^{(\alpha,\lambda)}[p\|q] \ge D_{GS}^{(\alpha',\lambda)}[p\|q], \ (\alpha \ge \alpha').$$

Proposition 8. (Subadditivity of the α -geodesical skew divergence with respect to α) α -Geodesical skew divergence satisfies the following inequality for all $\alpha, \beta \in \mathbb{R}, \lambda \in [0, 1]$

Proposition 9. (Continuity of the α -geodesical skew divergence with respect to α and λ) α -Geodesical skew divergence has the continuity property.

Proposition 10. (Lower bound of the α -geodesical skew divergence) α -Geodesical skew divergence satisfies the following inequality for all $\alpha \in \mathbb{R}, \lambda \in [0, 1]$.

is the function that defines the f-mean.

The f-mean function satisfies

$$\lim_{\alpha \to \infty} f_{\alpha}(x) = \begin{cases} \infty & (|x| < 1), \\ 1 & (|x| = 1), \\ 0 & (|x| > 1), \end{cases} \quad \lim_{\alpha \to -\infty} f_{\alpha}(x) = \begin{cases} 0 & (|x| < 1), \\ 1 & (|x| = 1), \\ \infty & (|x| > 1). \end{cases}$$

It is easy to see that this family includes various known weighted means including the *e*-mixture and *m*-mixture for $\alpha = \pm 1$ in the literature of information geometry.

Definition 3. (α -representation) For some positive measure $m_i^{\frac{1-\alpha}{2}}$, the coordinate system $\boldsymbol{\theta} = (\theta^i)$ derived from the α -divergence is

$$\theta^i = m_i^{\frac{1-\alpha}{2}} = f_\alpha(m_i) \tag{3}$$

and θ^i is called the α -representation of a positive measure $m_i^{\frac{1-\alpha}{2}}$.

Definition 4. (α -geodesic) The α -geodesic connecting two probability vectors $p(\mathbf{x})$ and $q(\mathbf{x})$ is defined as

$$r_i(t) = c(t) f_{\alpha}^{-1} \Big\{ (1-t) f_{\alpha}(p(x_i)) + t f_{\alpha}(q(x_i)) \Big\}, \quad t \in [0,1]$$
(4)

where c(t) is determined as $c(t) = \frac{1}{\sum_{i=1}^{n} r_i(t)}$.

3 α -geodesical skew divergence

Definition 5. (α -Geodesical Skew Divergence) The α -geodesical skew divergence $D_{GS}^{(\alpha,\lambda)}: \mathcal{P} \times \mathcal{P} \to [0,\infty]$ is defined between two Radon–Nikodym densities p and q of μ -absolutely continuous probability measures by:

$$D_{GS}^{(\alpha,\lambda)}\left[p\|q\right] \coloneqq D_{KL}\left[p\|m_f^{(\lambda,\alpha)}(p,q)\right]$$

$$D_{GS}^{(\alpha,\lambda)}[p\|q] \ge \int_{\mathcal{X}} p \ln \frac{p}{\max\{p,q\}} d\mu.$$
(7)

Proposition 11. (Upper bound of the α -geodesical skew divergence) α -Geodesical skew divergence satisfies the following inequality for all $\alpha \in \mathbb{R}, \lambda \in [0, 1]$.

$$D_{GS}^{(\alpha,\lambda)}[p||q] \le \int_{\mathcal{X}} p \ln \frac{p}{\min\{p,q\}} d\mu.$$
(8)

Theorem 12. (Strong convexity of the α -geodesical skew divergence) α -Geodesical skew divergence $D_{GS}^{(\alpha,\lambda)}[p||q]$ is strongly convex in p with respect to the total variation norm.

3.2 Function space

For an α -geodesical skew divergence $f_q^{(\alpha,\lambda)}(p) = D_{GS}^{(\alpha,\lambda)}[p||q]$ with one side of the distribution fixed, let the entire set be

$$\mathcal{F}_q = \left\{ f_q^{(\alpha,\lambda)} \mid \alpha \in \mathbb{R}, \lambda \in [0,1] \right\}.$$
(9)

For $f_q^{(\alpha,\lambda)} \in \mathcal{F}_q$, its semi-norm is defined by

$$\left\| f_q^{(\alpha,\lambda)} \right\|_p \coloneqq \int_{\mathcal{X}} \left(\left| f_q^{(\alpha,\lambda)} \right|^p d\mu \right)^{\frac{1}{p}}.$$
 (10)

Theorem 13. Let \mathcal{N} be the kernel of $\|\cdot\|_p$ as follows:

where $\alpha \in \mathbb{R}$ and $\lambda \in [0, 1]$.

$$\mathcal{N} \coloneqq ker(\|\cdot\|_p) = \left\{ f_q^{(\alpha,\lambda)} \mid f_q^{(\alpha,\lambda)} = 0 \right\}.$$
(11)

Then the quotient space $\mathcal{V} \coloneqq (\mathcal{F}_q, \|\cdot\|_p)/N$ is a Banach space.

The Institute of Statistical Mathematics