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Abstract
For the non-uniqueness of solutions in geophysical inversion problems, prior information of

the model is often required as the constraint condition. A common constraint information

is to assume the smooth distribution of model parameters. Most of the geophysical data

are irregularly distributed, however, most of the existing smoothing constraint methods

are applied to the regular distribution of the observation data after gridding. This poster

proposes a Bayesian smoothing constraint method based on Delaunay tessellation, which

can guarantee the density of the original data and directly carry out the second-order

smoothing constraint.

Introduction
In this poster, firstly, Delaunay Tesselation is carried out for irregular gravity network.

Secondly, based on the prior assumption of smooth distribution of Bouguer anomaly rela-

tive to surface relief, the quadratic polynomial function is used to fit the Bouguer gravity

anomaly with gaussian noise in each triangle, and the smoothing constraints of the first

and second derivatives are carried out at the same time. Finally, Bayesian optimal poste-

rior estimation algorithm based on ABIC criterion is used to solve the model parameters

iteratively.

Methodology

Objective function Given some irregular distribution of gravity observation

points, we do the delaunay tesselation on those position. As shown in Fig.1(a), the

rectangular region is tessellated to M triangles by the locations of N observation points

and some additional points on the boundaries including the corners. B denotes the N

observed Bouguer gravity anomaly values, which are obtained by sampling from the the-

oretical smooth Bouguer gravity anomaly data shown in Fig.1(b) and adding Gaussian

noise.
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Figure 1: (a)Delaunay tesselation. (b)Theoretical smooth Bouguer gravity anomaly.

In order to smooth the observed Bouguer gravity anomaly, we choose the quadratic polyno-

mial function to fit it in each delaunay triangle. Inside themth triangle ∆m(m = 1, ...,M),

the smooth Bouguer gravity anomaly at any position (x, y) is expressed by

Bm(x, y) = am x
2 + bm x y + cm y

2 + dm x + em y + fm. (1)

Suppose that the smooth Bouguer gravity anomaly values at three vertices Bm1, Bm2, Bm3

and three mid-points Bm4, Bm5, Bm6 are known and take them into the Eq.(1), we can

get

B̃m = Em θm, (2)

B̃m denotes the smooth Bouguer gravity anomaly of the three vertices and three mid-

points in the M tranigles.

With the assumption that the observed Bouguer gravity anomaly has Gaussian noise, the

objective function can be written as

B −C B̃ = ε ∼ N
(
0,Σ−1

d

)
(3)

where B̃ denotes N smooth Bouguer gravity anomaly values, C denotes the configuration

matrix, and

Σd = WT
d Wd =


1
σ2
d

1
σ2
d

. . .
1
σ2
d

 . (4)

Then the conditional probability density function of the observed data is given by

L
([
B −C B̃

]
|B̃
)

=

[
det

(
2π
(
WT

dWd

)−1
)]−1

2

exp

[
−1

2

(
B −C B̃

)T
WT

dWd

(
B −C B̃

)] (5)

Smooth constrain With the prior information that Bouguer gravity anomaly is

smooth distribute, we fit it by quadratic polynomial function and contrain its first-order

flatness and second-order smoothness. D1,D2 denote the flatness matrix and smooth-

ness matrix respectively. The prior knowledge can be expressed by the following normal

distribution: [
D1

D2

]
B̃ ∼ N

(
0,

[
Σ1

Σ2

]−1)
(6)

The prior probability density function is given by:

π(B̃) = (2π)−
rank(DTD)

2

[
det

(
σ2
d

DTD

)
+

]−1
2

exp

[
−
B̃T
(
w1 DT

1 D1 + w2 DT
2 D2

)
B̃

2σ2
d

]
(7)

where

D =

[√
w1 D1√
w2 D2

]
. (8)

w1 is the constrain weight between fitness and flatness and w2 is the constrain weight

between fitness and smoothness. To define the D1,D2, we use the followning penalty

function:

Φ(x, y) =

∫∫
Ω

w1

{[
∂Bm(x, y)

∂x

]2

+

[
∂Bm(x, y)

∂y

]2
}

+

w2

{[
∂2Bm(x, y)

∂x2

]2

+ 2

[
∂2Bm(x, y)

∂xy

]2

+

[
∂2Bm(x, y)

∂y2

]2
}

dxdy.

(9)

Bayesian optimal posterior estimation and ABIC According to

the Eq.5 and Eq.7 and Bayes formula, the posterior probability density function of model

parameters can be expressed as

p
(
B̃ |B −C B̃

)
=
L
(
B −C B̃ |B̃

)
π
(
B̃
)

p
(
B −C B̃

) . (10)

We use the ABIC method to determine the value of hyper-parameters and goodness of

the posterior model

ABIC = min

[(
N − rank

(
DTD

) )
log 2πσ̂2

d − log
(

det
[
DTD

]
+

)
+ log

(
det
[
ZTZ

] )
+
(
N − rank

(
DTD

) )]
+ 4

(11)

where

σ̂2
d =

U
(
B̃∗
)

N − rank (DTD)
. (12)

Here, B̃∗ is the optimal solution of U
(
B̃
)

= ‖a−ZB̃‖2, where a =

[
B

0

]
, Z =

[
C

D

]
,

and

B̃∗ =
(
ZTZ

)−1
ZT a. (13)

Synthetic data test
After adding different levels of Gaussian noise to the theoretical smooth gravity anomaly,

the corresponding hyper-parameters are obtained by ABIC method, and then the esti-

mated smooth Bouguer gravity anomaly data are calculated.
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Figure 2: Observed data with (a)1% (b)3% (c)5% Gaussian noise.
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Figure 3: Hyper-parameters when the Gaussian noise level is (a)1% (b)3% (c)5%.
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Figure 4: Estimated smooth Bouguer gravity anomaly when the Gaussian noise level is (a)1% (b)3% (c)5%.

Conclusion and next work
The Bayesian method of second-order directly smoothing on Delaunay Tesselation can ef-

fectively smooth the noise. This method can be used in many geophysical inversion work,

such as the gravity inversion and crustal strain-rate fields estimation and so on. The next

step is to test the effect of simultaneous estimation of near-surface density and Bouguer

gravity anomaly.


