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A bayesian method of second-order smoothing on Delaunay tessellation
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Abstract

For the non-uniqueness of solutions in geophysical inversion problems, prior information of
the model is often required as the constraint condition. A common constraint information
is to assume the smooth distribution of model parameters. Most of the geophysical data
are irregularly distributed, however, most of the existing smoothing constraint methods
are applied to the regular distribution of the observation data after gridding. This poster
proposes a Bayesian smoothing constraint method based on Delaunay tessellation, which
can guarantee the density of the original data and directly carry out the second-order

smoothing constraint.

Introduction

In this poster, firstly, Delaunay Tesselation is carried out for irregular gravity network.
Secondly, based on the prior assumption of smooth distribution of Bouguer anomaly rela-
tive to surface relief, the quadratic polynomial function is used to fit the Bouguer gravity
anomaly with gaussian noise in each triangle, and the smoothing constraints of the first
and second derivatives are carried out at the same time. Finally, Bayesian optimal poste-
rior estimation algorithm based on ABIC criterion is used to solve the model parameters
iteratively.

Methodology

Objective function Given some irregular distribution of gravity observation

As shown in Fig.1(a), the
rectangular region is tessellated to M triangles by the locations of N observation points

points, we do the delaunay tesselation on those position.

and some additional points on the boundaries including the corners. B denotes the N
observed Bouguer gravity anomaly values, which are obtained by sampling from the the-
oretical smooth Bouguer gravity anomaly data shown in Fig.1(b) and adding Gaussian

noise.
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Figure 1: (a)Delaunay tesselation. (b)Theoretical smooth Bouguer gravity anomaly.

In order to smooth the observed Bouguer gravity anomaly, we choose the quadratic polyno-
mial function to fit it in each delaunay triangle. Inside the mth triangle A,,(m =1, ..., M),
the smooth Bouguer gravity anomaly at any position (x,y) is expressed by

The prior probability density function is given by:
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wy is the constrain weight between fitness and flatness and w, is the constrain weight

between fitness and smoothness. To define the Dy, Dy, we use the followning penalty

function:
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Bayesian optimal posterior estimation and ABIC According to
the Eq.5 and Eq.7 and Bayes formula, the posterior probability density function of model
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parameters can be expressed as

L(B—CB|B) W(B)

p(B|B—CB): (10)

p(B—CB)

We use the ABIC method to determine the value of hyper-parameters and goodness of
the posterior model

ABIC =min [(N — rank (DTD) ) log 2165 — log (det [DTD] +)

(11)
+ log (det [ZTZ] ) + (N — rank (DTD) )] +4

where _
,__ u(B)
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Here, B* is the optimal solution of U (B) = |la—ZB||*, where a = 0 | Z = Dl
and
B = (2'2) " 7" a. (13)

Synthetic data test

After adding different levels of Gaussian noise to the theoretical smooth gravity anomaly,
the corresponding hyper-parameters are obtained by ABIC method, and then the esti-
mated smooth Bouguer gravity anomaly data are calculated.

mGal mGal

mGal

30.25
30.25
30.25

Bm<$ay>:ame+bmxy+cmy2+dmx+€my+fm- (1)

-200

-200
-210

-210 -200
-210
-220
-230
-240
-250
-260

-270

Suppose that the smooth Bouguer gravity anomaly values at three vertices By,1, B2, B3

-220
-220

-230 -230

and three mid-points B4, Bims, Bme are known and take them into the Eq.(1), we can

—240 -240

-250

get

-250
-260

Latitude(®)

30.0625 30.125 30.1875
Latitude(°®)

30.0625 30.125 30.1875
Latitude(°®)

30.0625 30.125 30.1875

Bm = E,, Bm, (2) 200 -270

~

-270

Bm denotes the SmOOth Bouguer gra;Vity a;noma;].y Of the three Vertlces a.'nd three mld_ 120 120.0625 120.125 120.1875 120.25 120 120.0625 120.125 120.1875 120.25 120 120.0625 120.125 120.1875 120.25

Longitude(®) Longitude(®) Longitude(°®)

Figure 2: Observed data with (a)1% (b)3% (c)5% Gaussian noise.
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objective function can be written as

B-CB=e~N (0,3} (3)
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where B denotes N smooth Bouguer gravity anomaly values, C denotes the configuration
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Figure 3: Hyper-parameters when the Gaussian noise level is (a)1% (b)3% (c¢)5%.
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Then the conditional probability density functlon of the observed data is given by

L([B-cB]18) - [det (% (W?Wd)l)] _%

exp [—% (B _ CB)T wWIiw, (B _ CB)]
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Smooth constrain With the prior information that Bouguer gravity anomaly is
smooth distribute, we fit it by quadratic polynomial function and contrain its first-order
flatness and second-order smoothness. Dj, Dy denote the flatness matrix and smooth-

ness matrix respectively. The prior knowledge can be expressed by the following normal

) )

distribution:

Figure 4: Estimated smooth Bouguer gravity anomaly when the Gaussian noise level is (a)1% (b)3% (c)5%.

Conclusion and next work

The Bayesian method of second-order directly smoothing on Delaunay Tesselation can ef-
fectively smooth the noise. This method can be used in many geophysical inversion work,
such as the gravity inversion and crustal strain-rate fields estimation and so on. The next
step is to test the effect of simultaneous estimation of near-surface density and Bouguer
gravity anomaly:.
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