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Goals and Challenges

® Real application problems in signal processing and machine learning generate
multidimensional data with high dimensionality structures;

® Tensor decompositions aim to represent a higher-order (or multi-dimensional) data as
a multilinear product of several latent factors;

® Based on low rank approximation which avoids the “curse of dimensionality”;

® Constrained tensor decomposition Is a powerful tool for the extraction of parts-based
and physically meaningful latent components while preserving multilinear structure;

® From the viewpoint of optimization, the objective function Is a nonconvex,
nonsmooth with a fidelity term and a regularization term;

Tensor Networks

Internet, Biological Networks, Brain Graphs

® Robust and accurate numerical methods are
required since the problem is ill-posed, and the
numerical solutions are sensitive to the perturbation
of Input data.

Tensor Networks Nonconvex Optimization

® Representation ability: a powerful tool to describe strongly
entangled quantum many-body systems In physics;

® Dimensional / Model reduction: decompose a high-order tensor
Into a collection of low-order tensors connected according to a
network pattern;

® Tensor network diagram
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® Tensor train (TT) decomposition
[Oseledets SIAM, 2011]:
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® Tensor chain/ ring (TR) decomposition: ». n,
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® Sum of TT with shared core tensors N N
® Hierarchical Tucker decomposition /T

® Given a d-th order tensor, compute the cores with given TR-
ranks

min T - R(Zl,Zz,...,Zd)HF +19(Z,)
st. Z2,,4,,....,.2,eM

® Fidelity term denotes the low rank approximation of given tensor;

® Regularization term denotes the prior knowledge for the output
core tensors, which are sparse, honnegative/box constrained,
orthogonal (robust PCA), graph structures, etc.

® Alternating least squares method (block coordinate descent
method, or block Gauss-Seidel method):

B Alternatively update one core tensor and fix all the other cores
tensors

B Solve the subproblem: mode-k unfolding matrix representation:

min T —Zio (Zfézk])T) -t HY (Zk(Z))
Zk(z) c M

® Task 1: graph topology, geometrical
Information of data can be obtained by
modeling a neighbor graph;

g(Z) — ‘Jgraph — Z(Zi — Zj)ZWij — Tr(ZT (D _W)Z)

S.t.

® Task 2: honnegative tensor network
optimization. Other related models:

nonnegative matrix factorization
4 (NMF), NCP, NTD, NTT, etc.
N ® Task 3: rank-selection randomized
W greedy block coordinate descent
/r . ; .
- Iterative algorithm. Solve the
N subproblem via randomized iterations.

Numerical Experiments

® Randomly generated tensor with Gaussian distributions; [ 5. i <. | Meric Methods °
. . _ NMF | NCP | NTD | NIT | NIR | GNMF |

® COIL-100 (first 20 objects); T ORL | AC | 676E27 | 66,1524 | 668226 | G96E19 | 715528 | 70927 |
- NMI | 82.6+19 | 81.7+14 | 82.1+1.6 | 83.7+12 | 85.6+1.4 | 852414 |
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