Constrained Tensor Network Nonconvex Optimization with Graph Structured Data via Randomized Iterations

Ning Zheng（鄭寧）
Research Center for Statistical Machine Learning，The Institute of Statistical Mathematics

Goals and Challenges

－Real application problems in signal processing and machine learning generate multidimensional data with high dimensionality structures；
－Tensor decompositions aim to represent a higher－order（or multi－dimensional）data as a multilinear product of several latent factors；
－Based on low rank approximation which avoids the＂curse of dimensionality＂；
－Constrained tensor decomposition is a powerful tool for the extraction of parts－based and physically meaningful latent components while preserving multilinear structure；
－From the viewpoint of optimization，the objective function is a nonconvex， nonsmooth with a fidelity term and a regularization term；

Tensor Networks

－Representation ability：a powerful tool to describe strongly entangled quantum many－body systems in physics；
－Dimensional／Model reduction：decompose a high－order tensor into a collection of low－order tensors connected according to a network pattern；
－Tensor network diagram

Tensor Train／Ring and Matrix Product State

Internet，Biological Networks，Brain Graphs
－Robust and accurate numerical methods are required since the problem is ill－posed，and the numerical solutions are sensitive to the perturbation of input data．

Tensor Networks Nonconvex Optimization

－Given a d－th order tensor，compute the cores with given TR－ ranks

$$
\begin{aligned}
& \min \left\|T-R\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)\right\|_{F}+\mu g\left(Z_{k}\right) \\
& \text { s.t. } \quad Z_{1}, Z_{2}, \ldots, Z_{d} \in M
\end{aligned}
$$

－Fidelity term denotes the low rank approximation of given tensor；
－Regularization term denotes the prior knowledge for the output core tensors，which are sparse，nonnegative／box constrained， orthogonal（robust PCA），graph structures，etc．
－Alternating least squares method（block coordinate descent method，or block Gauss－Seidel method）：
－Alternatively update one core tensor and fix all the other cores tensors
－Solve the subproblem：mode－k unfolding matrix representation：

$$
\begin{aligned}
& \left.\min \| \mathbf{T}_{[k]}-\mathbf{Z}_{k(2)}\left(\mathbf{Z}_{[2]}^{\neq k}\right)^{T}\right) \|_{F}+\mu g\left(\mathbf{Z}_{k(2)}\right) \\
& \text { s.t. } \quad \mathbf{Z}_{k(2)} \in M
\end{aligned}
$$

－Tensor train（TT）decomposition ［Oseledets SIAM，2011］：

－Tensor chain／ring（TR）decomposition： ［Zhao，2018］
－Sum of TT with shared core tensors
－Hierarchical Tucker decomposition
－Task 1：graph topology，geometrical information of data can be obtained by modeling a neighbor graph；
－Task 2：nonnegative tensor network optimization．Other related models： nonnegative matrix factorization （NMF），NCP，NTD，NTT，etc．
－Task 3：rank－selection randomized greedy block coordinate descent iterative algorithm．Solve the subproblem via randomized iterations．

Numerical Experiments

－Randomly generated tensor with Gaussian distributions；
－COIL－100（first 20 objects）；
－Georgia Tech Face．

（i）GNTR

