裾共単調性尺度による裾従属性の定量化

小池 孝明 リスク解析戦略研究センター 特任助教

－従来の裾従属性係数とその問題点

ある接合関数 C 及び確率ベクトル $(U, V) \sim C$ に対し，従来の裙従属性尺度

$$
\lambda(C)=\lim _{p \downarrow 0} \mathbb{P}(U \leq p, V \leq p \mid U \leq p),
$$

は正方形 $[0, p]^{2}$ を以て裾の確率を定量化しているが，長方形 を許すことで裙確率に関するより多くの情報が得られる。

例えば，以下のSurvival Marshall－Olkin copulaでは，

従来の裾従属性係数は，裾従属性を過小評価する危険がある

－裾共単調性尺度とその表現

$C:$ 接合関数（コピュラ）
Π ：独立コピュラ
M ：共単調コピュラ
$\mathcal{M}:[0,1] \times[0,1]$ 上の確率測度の集合
に対し，μ－Tail Concordance Measure（ μ－TCM），$\mu \in \mathcal{M}$ を以下で定義する。

$$
\begin{aligned}
\lambda_{\mu}(C) & =\lim _{p \downarrow 0} \frac{\int_{[0,1]^{2}}(C-\Pi)(p u, p v) \mathrm{d} \mu(u, v)}{\int_{[0,1]^{2}}(M-\Pi)(p u, p v) \mathrm{d} \mu(u, v)} \\
& =\frac{\int_{[0,1]^{2}} \Lambda(u, v ; C) \mathrm{d} \mu(u, v)}{\int_{[0,1]^{2}} M(u, v) \mathrm{d} \mu(u, v)} \\
& =: \lambda_{\mu}(\Lambda)
\end{aligned}
$$

ここで

$$
\Lambda(u, v ; C)=\lim _{p \downarrow 0} \frac{C(p u, p v)}{p}
$$

はTail dependence function（TDF）と呼ばれる。
μ－TCMは裙従属性の定量化のための自然な公理より導かれ，以下の表現を持つ。

加藤 昇吾（統計数理研究所）
Marius Hofert（University of Waterloo）

$$
\begin{aligned}
& \lambda_{\mu}(\Lambda) \propto \int_{\left(0, \frac{\pi}{2}\right)} \Lambda(\cos \phi, \sin \phi) \mathrm{d} \mu_{\phi}(\phi) \\
& \propto w_{0} \lambda(C)+w_{1} \int_{(0,1)} \Lambda(t, 1) \mathrm{d} \mu_{1}(t) \\
& \quad+w_{2} \int_{(0,1)} \Lambda(1, t) \mathrm{d} \mu_{2}(t) \\
& \mu_{\phi}, \mu_{1}, \mu_{2}:(0, \pi / 2),(0,1),(0,1) \text { 上の確率測度 } \\
& w_{0}, w_{1}, w_{2} \geq 0, w_{0}+w_{1}+w_{2}=1 \\
& \text { 比例定数は } \lambda_{\mu}(M)=1 \text { となるように定める. }
\end{aligned}
$$

－裾共単調性尺度の極小値と極大値

$$
\underline{\lambda}(\Lambda)=\inf _{\mu \in \mathcal{M}} \lambda_{\mu}(\Lambda) \quad \text { and } \quad \bar{\lambda}(\Lambda)=\sup _{\mu \in \mathcal{M}} \lambda_{\mu}(\Lambda)
$$

とすると，

$$
\begin{align*}
\underline{\lambda}(\Lambda) & =\lambda_{\mu_{l(1)}}(\Lambda)=\lambda(\Lambda) \quad(\text { 従来の裙従属係数 }) \\
\bar{\lambda}(\Lambda) & =\sup _{a \in(0, \infty)} \lambda_{\mu_{l(a)}}(\Lambda) \\
& =\lim _{a \rightarrow 0} \lambda_{\mu_{l(a)}}(\Lambda) \vee \lim _{a \rightarrow \infty} \lambda_{\mu_{l(a)}}(\Lambda)
\end{align*}
$$

ここで $\mu_{l(a)}$ は傾きa，切片0の直線に重みが集中した確率測度
－例：Asymmetric survival Gumbel copula

- 非対称性のパラメーターを固定，紫 \rightarrow 赤で裾従属性が弱 \rightarrow 強
- 全ての角度に重みのある μ－TCMが裾従属性の定量化の上では好ましい

例：Tail Spearman＇s rho：角度を一樣に重み付けた場合に対応

$$
\lambda_{S}(\Lambda)=\int_{0}^{1}\left(\lambda_{\mu_{l(a)}}(\Lambda)+\lambda_{\mu_{l(1 / a)}}(\Lambda)\right) \mathrm{d} a
$$

－参考文献

Koike，T．，Kato，S．，\＆Hofert，M．（2021）．Tail concordance measures：
A fair assessment of tail dependence．arXiv preprint arXiv：2101．12262．

