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[ A ROBUST HIGH-DIMENSIONAL BAYESIAN FILTER ]

Background

* Task: Estimate a signal from a sequence of noisy
observations.
* A general model:
t

p(To:t, Y1:t) = H Fr(@rler—1)gr (yrl@r)

* Bayesian framework: obtain all relevant info. about
x, from the filtering distribution p(x;|y1..)

XDifficult to evaluate the filtering distribution analytically
especially for non-linear models.

Approaches for non-linear models in 1990s:

« Sequential Monte Carlo (SMC) / particle filters (PF)
[Doucet et al., 2000]
- Numerical integration techniques to approximate p(x;|y1.c)
XComputational complexity
XlImportance sampling design is not efficient for high-dim
problems.
* Ensemble Kalman filter (EnKF) [Rebeschini et al., 1994]
* A main numerical technique for solving him-dim forecasting
and data assimilation problems

* A recursive Monte Carlo filter to approximate p(x¢|y1.¢)
empirically by an ensemble of random samples.
XNot robust to observation errors which are heavy-tailed

and/or skewed distributed.

Recent robust approach:

* GEnKF [Katzfuss et al., 2019]
- A hierarchical state space model with t-distributed
observation errors
- A combination of an EnKF and a Gibbs sampler

XNot robust to observation errors which are skewed
distributed.

Objective

* Generalize GEnKF by utilizing a more general and
flexible distribution for the observation errors,
generalized hyperbolic (GH) distribution®.
t[Barndorff-Nielsen, et al., 1982]

* Enable to model more practical cases with possibly
skewed data.

- Propose GH-GEnKF

Stochastlc GH-GEnKF:
Generalized hyperbolic (GH) distribution

* A normal variance-mean mixture:

y=p+0y+oVoz

* GH distribution: a prominent example
 0: Generalized inverse Gaussian (GIG) with 3 parameters
AeR,x>0,9>0)

« Extremely flexible to model heavy tailed and skewed data
* Include Student t, Laplace, hyperbolic, and normal inverse
Gaussian as special cases.

* Use the GH distribution as likelihood to obtain a
general filtering technique robust to outliers.

Yi|@e, 01,9 ~ N (Hywy + 7 Cy 0 0, Ri(6y))

Z¢|zi-1 ~ fi(@|T1-1) [Independent of parameters

Oin ~ GIG(A, X, Yr) forn =1,...,ny
Y~ N (py,05)

7t : Skewness
Ry(6:) = o7diag(0r,1, .., 0; ny) : Kurtosis
(Mes Xt» ¥, 07) : assumed to be known (static)
C; : a known vector composed of explanatory variables

* Forecast step:
- Draw xbl—llt—l""'xév—llt—l from

(0. 7e, Yrie—1) = p(@e|Yr1:e—1)P(Or, ve|yr:e—1)

- Propagate each ensemble member using the transition pdf.

@,y ~ fl@idlay_y, )

« Joint distribution of all variables at time t:

= p(yel@e, 0, 7:)p(0:)p(7)
% p(@e|yi:-1)

(Y, @, 01, Ve|Y1:4-1)

Conclusion

* A robust ensemble Kalman filter is proposed which is
able to deal with high-dimensional state process in the
presence of heavy-tailed and skewed observation
errors.

* Numerical simulations empirically show that this
proposed GH-GEnKF outperforms existing ensemble
Kalman filtering techniques.

Numerical simulations

Evaluation points:
* Performance for high-dim problems

* Robustness for observations with heavy-tailed (and
possibly skewed) noise

Simulated system:
* The latent process x; consists in a time-varying
spatial physical phenomenon.
ng = 100 on a one-dimensional spatial domain [1, 100]
Ny, = 75 randomly chosen observation locations
Experimental conditions:
* Prior pdf of the state:
fe(@ilzi-1) = N (2 M(2e-1), Q)

M : state evolution operator
- Linear dynamics case:

M(x;_1) = 0.9z,
- Nonlinear dynamics case:
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M(z — " forl=1,...,n
M(z—1)], = B +1+z371,1 yee N
Q : powered exponential covariance function
(power 1.8 and scale parameter 10)

* Parameter setting in GH-GEnKF
Yel@e. 0,7 ~ N (Hiwe + 71Cy 0 0, Ry (6:))

Tl ~ fr(@e]we1)

O ~ GIGQL o) forn =1,....ny
Y~N(0,1)
Ry(0:) = 1 diag(01,---,01n,)

C; : binary variables which could reflect the quality of
the sensors (50% of the values: 1 at random
observation locations)

Compared methods using 100 Monte Carlo runs:
* EnKF (with Gaussian noise, /=1,500)

* GEnKF (with t-distributed noise, N=30)

* GH-GENKF (with GH distributed noise, N=30)

Simulation result
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Figure 1. Simulated state and associated observations at time t = 3,
together with posterior means obtained by the various methods
with model parameters: y =-2,A =-1.5, x =-2A and y = 0.
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