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本研究室では統計的学習機械を用いて、音声/音楽/画像/SNSなどを処理する方法について研究しています。具体的にはカーネルマシン、ブースティング、
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• 統計科学を用いて、
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Background

• Task: Estimate a signal from a sequence of noisy 
observations.
• A general model:

• Bayesian framework: obtain all relevant info. about 
!! from the filtering distribution "(!!|%":!)
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ABSTRACT

Ensemble Kalman filtering techniques are very popular re-
cursive Monte Carlo algorithms, developed in the geophysics
literature, for inference in high-dimensional spatio-temporal
state-space models. Unfortunately, these techniques tend to
be inefficient in the presence of heavy-tailed data such as out-
liers. In this paper, we propose a robust ensemble-based in-
ference technique by introducing the generalized hyperbolic
distribution as a flexible and general distribution for the ob-
servation errors. Simulation results empirically show that the
proposed algorithm achieves significantly better performance
compared to existing algorithms.

Index Terms— Bayesian inference, Monte Carlo, ensem-
ble Kalman filter, high-dimensional, outliers

1. INTRODUCTION

In many applications, we are interested in estimating a signal
from a sequence of noisy observations. This problem can gen-
erally be stated in a state space form as follows. A transition
equation describes the prior distribution, ff (xt|xt−1), of a
hidden first-order Markov process {xt; t ∈ N}, xt ∈ Rnx and
an observation equation describes the likelihood, gt(yt|xt),
of the observations {yt; t ∈ N∗}, yt ∈ Rny which are as-
sumed to be conditionally independent given the state process
xt. As a consequence, the joint distribution of (x0:t,y1:t)
factorizes as:

p(x0:t,y1:t)=p(x0)
t∏

k=1

fk(xk|xk−1)gk(yk|xk). (1)

Within a Bayesian framework, all relevant information about
xt given observations up to and including time t can be ob-
tained from the filtering distribution p(xt|y1:t).

Except in a few special cases, including linear and Gaus-
sian state space models (Kalman filter [1]) and hidden finite-
state space Markov chains, it is impossible to evaluate the
filtering distribution analytically. Since the nineties, sequen-
tial Monte Carlo (SMC) approaches have become a powerful
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methodology to cope with non-linear and non-Gaussian prob-
lems [2]. These methods, also known as particle filters (PF),
exploit numerical integration techniques for approximating
the filtering probability density function of inherently nonlin-
ear non-Gaussian systems. Using these methods, the obtained
estimates of sequences of functional w.r.t. to the filtering dis-
tribution can be set arbitrarily close to the optimal solution at
the expense of computational complexity [3].

However, due to their importance sampling based design,
classical SMC methods tend to be inefficient when applied to
high-dimensional problems as they suffer from weight degen-
eracy (i.e., all weights but one become essentially zero) [4–6].
This issue, known as the curse of dimensionality, has rendered
traditional SMC algorithms largely useless in the increasing
number of high-dimensional applications such as multiple tar-
get tracking, weather prediction, and oceanography.

In contrast to the approaches above, approximate state-
estimation methods in the geoscience literature scale well
to high-dimensional problems. In particular, the ensem-
ble Kalman filter (EnKF), introduced in [7], has became
one of the main numerical technique for solving such high-
dimensional forecasting and data assimilation problems [8].
The EnKF is a recursive Monte Carlo filter which approx-
imates the Bayesian filtering distribution empirically by an
ensemble of random samples. Like other sequential Monte
Carlo algorithms, such as particle filters, the EnKF also uses
an ensemble representation that is propagated forward, but
instead of reweighting (and resampling), the EnKF updates
the ensemble using a linear “shift” that approximates the
best linear update under some model assumptions. While
the EnKF is based on the assumption of a linear and Gaus-
sian model, it provides accurate inference for many nonlinear
models as well, thus allowing it to be successfully applied
to high-dimensional non-linear spatio-temporal state-space
models, e.g. [9].

Unfortunately, traditional EnKF are not robust to observa-
tion errors which are heavy-tailed and/or skewed distributed,
or corrupted by outliers [10]. A robust EnKF algorithm has
been recently proposed in [11]. A hierarchical state space
model is introduced by considering the observation errors to
be t-distributed and thus a combination of an EnKF and a
Gibbs sampler, called GEnKF, is proposed to solve the filter-
ing inference in this model. In this work, we propose to gener-

✕Difficult to evaluate the filtering distribution analytically 
especially for non-linear models.

Approaches for non-linear models in 1990s: 
• Sequential Monte Carlo (SMC) / particle filters (PF)
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empirically by an ensemble of random samples. 

✕Computational complexity
✕Importance sampling design is not efficient for high-dim 

problems.

✕Not robust to observation errors which are heavy-tailed 
and/or skewed distributed. 

Recent robust approach:
• GEnKF [Katzfuss et al., 2019]

- A hierarchical state space model with t-distributed 
observation errors

- A combination of an EnKF and a Gibbs sampler
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distributed. 

Objective

• Generalize GEnKF by utilizing a more general and 
flexible distribution for the observation errors, 
generalized hyperbolic (GH) distribution†. 
†[Barndorff-Nielsen, et al., 1982]

• Enable to model more practical cases with possibly 
skewed data. 

→ Propose GH-GEnKF

Stochastic GH-GEnKF:
Generalized hyperbolic (GH) distribution
• A normal variance-mean mixture:

• GH distribution: a prominent example
• !: Generalized inverse Gaussian (GIG) with 3 parameters
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• Include Student t, Laplace, hyperbolic, and normal inverse 

Gaussian as special cases.

outliers. The derivation of the resulting inference algorithm,
the GEnKF, based on a combination of an EnKF and a Gibbs
sampler [19] is possible by utilizing, through a hierarchical
SSM, the fact that the Student t-distribution belongs to the
class of scale mixtures of normals [20, 21].

In this work, we propose to extend this work by introduc-
ing a more general distribution, the generalized hyperbolic
(GH) distribution, for modeling the outliers, thus allowing us
to capture more practical cases with possibly skewed data. In
this section, we firstly introduce the GH distribution and then
the proposed filtering GH-GEnKF approach is described.

3.1. The generalized hyperbolic distribution

In this paper, we propose to use a more general model for the
measurements, which incorporate the one in [11] as a special
case. More specifically, a normal variance-mean mixture [12]
is considered as the distribution of the measurements, i.e.

y = µ+ θγ + σ
√
θz, (7)

where θ and z are independent scalar random variables, z ∼
N (0, 1), θ has a density (the mixing density) supported on
(0,∞) and σ > 0 and γ are constants. Normal variance-mean
mixtures encompass a large family of distributions commonly
used in many applied fields. A prominent example is the gen-
eralized hyperbolic (GH) distribution [22] that arises as the
density of y in Eq. (7) if we let the density of θ be the gener-
alized inverse Gaussian (GIG) which depends on 3 parameters
(λ ∈ R,χ ≥ 0,ψ ≥ 0). The GH density is extremely flexible
as it allows us to model heavy-tailed and skewed data. More-
over, the GH distribution includes the Student t, Laplace, hy-
perbolic, normal inverse Gaussian, and variance gamma den-
sities as special cases. This distribution has received, until
now, a lot of attention more in the financial-modeling litera-
ture [23, 24] and only quite recently in the signal processing
literature for modeling some complex spatio-temporal pro-
cess [25].

3.2. The stochastic GH-GEnKF

In this work, we propose to use the GH distribution as likeli-
hood in order to obtain a general filtering technique robust to
outliers. By considering that at each time t, the ny measure-
ments are independently GH-distributed, the following hierar-
chical SSM can be written by using the normal variance-mean
mixture representation of a GH random variable in Eq. (7):

yt|xt,θt, γt ∼ N (Htxt + γtCt ◦ θt,Rt(θt)) ,

xt|xt−1 ∼ ft(xt|xt−1),

θt,n ∼ GIG(λt,χt,ψt) for n = 1, . . . , ny,

γt ∼ N
(
µγ ,σ

2

γ

)
,

(8)

where γt corresponds to the skewness parameter of the GH
distribution and Rt(θt) = σ2

t diag(θt,1, . . . , θt,ny
). For sim-

plicity, the parameters (λt, χt, ψt, σ
2
t ) are assumed to be

known (and static) but they could be easily incorporated in the
proposed estimation procedure. Finally, Ct is a known vector
composed of explanatory variables (that will be discussed in
Section 4).

As in [11], the forecast independence of states and param-
eters is implied since the parameters (θt, γt) do not appear in
ft(xt|xt−1) and are temporally independent, i.e.

p(xt|θt, γt,y1:t−1) = p(xt|y1:t−1)p(θt, γt|y1:t−1), (9)

which enables inference based on a single ensemble. As a
consequence, the joint distribution of all variables at time t is
given by:

p(yt,xt,θt, γt|y1:t−1) = p(yt|xt,θt, γt)p(θt)p(γt)

× p(xt|y1:t−1).
(10)

Therefore as summarized in Algo 2, the proposed GH-
GEnKf consists in iteratively samples xt, θt and γt from their
respective full conditional distributions which can be obtained
analytically owing to the conjugacy properties of involved
distributions in Eq. (10).

Algorithm 2 Stochastic GH-GEnKF

Start with an initial ensemble {xi
0|0,θ

i
0, γ

i
0}j=1,...,N drawn from

p(x0)p(θ0)p(γ0)
for t = 1, . . . , T do # at each time

Propagate the ensemble: for j = 1, . . . , N

xj
t|t−1 ∼ ft(xt|x

j
t−1|t−1)

Update the ensemble: repeat the following steps until conver-

gence # Gibbs sampler

for j = 1, . . . , N do

a) Compute the EnKF update:

xj
t|t = xj

t|t−1+K̂t(θ
j
t )

[
yt + εjt −Htx

j
t|t−1 − γj

tCt ◦ θ
j
t

]

with εjt ∼ N
(
0,Rt(θ

j
t )
)

b) Sample θit,l|y1:t,x
j
t|t, γ

i
t ∼ GIG(λ − 1

2 ,χ +
(yt,l−[Htxt]l)

2

σ2
t

,ψ +
(γi

tCt,l)
2

σ2
t

) for l = 1, . . . , ny

c) Sample γi
t |y1:t,x

j
t|t,θ

i
t ∼ N

(
µ̃j
γ , (σ̃

j
γ)

2
)

with

µ̃j
γ = µγ + Γj

t(yt −Htx
j
t|t − µγCt ◦ θj

t ) (σ̃
j
γ)

2 = (1 −

Γj
tCt ◦ θ

j
t )σ

2
γ and

Γj
t = σ2

γ(Ct◦θ
j
t )

T
[
σ2
γ(Ct ◦ θ

j
t )(Ct ◦ θ

j
t )

T +R(θj
t )
]−1

end for

end for

4. NUMERICAL SIMULATIONS

In this section, we empirically study the performances of
the proposed GH-GEnKF in a challenging high-dimensional
problem where observations are corrupted by heavy-tailed
(and possibly skewed) noise. In particular, the latent process
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outliers. The derivation of the resulting inference algorithm,
the GEnKF, based on a combination of an EnKF and a Gibbs
sampler [19] is possible by utilizing, through a hierarchical
SSM, the fact that the Student t-distribution belongs to the
class of scale mixtures of normals [20, 21].

In this work, we propose to extend this work by introduc-
ing a more general distribution, the generalized hyperbolic
(GH) distribution, for modeling the outliers, thus allowing us
to capture more practical cases with possibly skewed data. In
this section, we firstly introduce the GH distribution and then
the proposed filtering GH-GEnKF approach is described.

3.1. The generalized hyperbolic distribution

In this paper, we propose to use a more general model for the
measurements, which incorporate the one in [11] as a special
case. More specifically, a normal variance-mean mixture [12]
is considered as the distribution of the measurements, i.e.

y = µ+ θγ + σ
√
θz, (7)

where θ and z are independent scalar random variables, z ∼
N (0, 1), θ has a density (the mixing density) supported on
(0,∞) and σ > 0 and γ are constants. Normal variance-mean
mixtures encompass a large family of distributions commonly
used in many applied fields. A prominent example is the gen-
eralized hyperbolic (GH) distribution [22] that arises as the
density of y in Eq. (7) if we let the density of θ be the gener-
alized inverse Gaussian (GIG) which depends on 3 parameters
(λ ∈ R,χ ≥ 0,ψ ≥ 0). The GH density is extremely flexible
as it allows us to model heavy-tailed and skewed data. More-
over, the GH distribution includes the Student t, Laplace, hy-
perbolic, normal inverse Gaussian, and variance gamma den-
sities as special cases. This distribution has received, until
now, a lot of attention more in the financial-modeling litera-
ture [23, 24] and only quite recently in the signal processing
literature for modeling some complex spatio-temporal pro-
cess [25].

3.2. The stochastic GH-GEnKF

In this work, we propose to use the GH distribution as likeli-
hood in order to obtain a general filtering technique robust to
outliers. By considering that at each time t, the ny measure-
ments are independently GH-distributed, the following hierar-
chical SSM can be written by using the normal variance-mean
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proposed estimation procedure. Finally, Ct is a known vector
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Therefore as summarized in Algo 2, the proposed GH-
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4. NUMERICAL SIMULATIONS

In this section, we empirically study the performances of
the proposed GH-GEnKF in a challenging high-dimensional
problem where observations are corrupted by heavy-tailed
(and possibly skewed) noise. In particular, the latent process

alize this robust GEnKF by utilizing a more general and flexi-
ble distribution for the observation errors, namely the general-
ized hyperbolic distribution [12], thus allowing us to capture
more practical cases with possibly skewed data.

The paper is organized as follows. In section 2 the gen-
eral principle of the EnKF is introduced. Section 3 presents
the proposed GH-EnKF algorithm for robust filtering in the
presence of outliers. Numerical results are shown in Section
4. Conclusions are given in Section 5.

2. THE ENSEMBLE KALMAN FILTER

The ensemble Kalman filter (EnKF) can be viewed as a
Monte Carlo approximation of the Kalman filter, in which
the posterior state distribution is represented by a population
of samples, called ensemble. This ensemble of N samples
or particles is then propagated forward through time and up-
dated when new observations become available. Compared to
Kalman filter, the EnKF can be seen as a dimension reduction
algorithm (for N < nx) since only the ensemble members (of
size Nnx) need to be stored instead of both one mean vector
and one covariance matrix (of size nx+n2

x), which thus leads
to computational feasibility even for very high-dimensional
systems.

Let us consider the following state space model (SSM),

Observation: yt|xt ∼ gt(yt|xt) = N (Htxt,Rt) ,

State: xt|xt−1 ∼ ft(xt|xt−1),
(2)

where we assume Gaussian-linear observations with Ht ∈
Rny×nx a linear operator and Rt ∈ Rny×ny a covariance
matrix. The state dynamics are arbitrary, but we assume
that we can simulate from the transition probabiliy density
functions (pdf) ft(xt|xt−1), ∀t ∈ N. Throughout this pa-

per,
{
xj
t|s

}

j=1,...,N
will denote the ensemble of N particles

that empirically approximate the pdf p(xt|y1:s) with equal
weights, i.e.,

p(xt|y1:s) ≈
1

N

N∑

j=1

δ
x

j

t|s
(xt). (3)

Similar to the Kalman filter, the EnKF consists of a forecast
step and an update step at every time t. Given the ensemble
x1

t−1|t−1
, . . . ,xN

t−1|t−1
approximately drawn from the filter-

ing distribution at time t−1, i.e. p(xt−1|y1:t−1), the forecast
step consists in propagating each ensemble member using the
transition pdf, i.e. for j = 1, . . . , N :

xj
t|t−1

∼ ft(xt|xj
t−1|t−1

). (4)

Then, the updated ensemble is obtained from the prediction
one by applying an affine correction based on the new obser-
vation yt. Two variants of this update step have been pro-
posed in the literature: the stochastic versions use artificially

perturbed observations [13, 14], whereas square root filters
are deterministic [15]. In this work, we will use the stochastic
updates which are defined for j = 1, . . . , N as follows:

xj
t|t = xj

t|t−1
+ K̂t(yt + εjt −Htx

j
t|t−1

). (5)

Each member of the prediction ensemble is passed through a
Kalman filter mean update based on an artificially perturbed
observation (yt+εjt ). This perturbation is necessary to obtain
the correct covariance [16]. Moreover, the traditional Kalman
gain has been replaced by an approximation given by

K̂t = Σ̂t|t−1H
T
t (HtΣ̂t|t−1H

T
t +Rt)

−1, (6)

where a covariance estimate of the predicted state dis-
tribution, Σ̂t|t−1 obtained from the prediction ensemble
(x1

t|t−1
, . . . ,xN

t|t−1
), has been used instead of the correct

one. The estimation of the nx × nx covariance matrix based
on a small ensemble is often challenging in applications with
large state dimension nx. In practice, Σ̂t|t−1 is generally a
regularized, sparse version of the sample covariance matrix of
the prediction ensemble obtained using some “localization”
technique. Several localization approaches have been pro-
posed, but in this work we use one of the most common form
of localization which uses tapering to avoid rank deficiency
and spurious correlations by assuming that dependence is
expected to decrease with increasing spatial distance [17].
Therefore, we have Σ̂t|t−1 = St ◦ Kt , where ◦ denotes the
Hadamard product, St is the sample covariance matrix and Kt

is a sparse positive definite correlation matrix. The stochastic
EnKF is summarized in Algo 1 - see [18] for a discussion on
its efficient implementation depending on the model under
study.

Algorithm 1 Stochastic EnKF

Start with an initial ensemble x1
0|0, . . . ,x

N
0|0

for t = 1, . . . , T do # at each time

Propagate the ensemble: for j = 1, . . . , N draw

xj
t|t−1 ∼ ft(xt|x

j
t−1|t−1)

Update the ensemble: for j = 1, . . . , N

a) Draw εjt ∼ N (0,Rt)

b) Set xj
t|t = xj

t|t−1 + K̂t(yt + εjt − Htx
j
t|t−1) where

K̂t is given in Eq. (6)

end for

3. A ROBUST SOLUTION: THE STOCHASTIC
GH-GEnKF

In [11], the authors propose to model the likelihood by a Stu-
dent t-distribution which has heavier tails than normal dis-
tribution, thus leading to an EnKF technique more robust to

outliers. The derivation of the resulting inference algorithm,
the GEnKF, based on a combination of an EnKF and a Gibbs
sampler [19] is possible by utilizing, through a hierarchical
SSM, the fact that the Student t-distribution belongs to the
class of scale mixtures of normals [20, 21].

In this work, we propose to extend this work by introduc-
ing a more general distribution, the generalized hyperbolic
(GH) distribution, for modeling the outliers, thus allowing us
to capture more practical cases with possibly skewed data. In
this section, we firstly introduce the GH distribution and then
the proposed filtering GH-GEnKF approach is described.
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cess [25].

3.2. The stochastic GH-GEnKF
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4. NUMERICAL SIMULATIONS

In this section, we empirically study the performances of
the proposed GH-GEnKF in a challenging high-dimensional
problem where observations are corrupted by heavy-tailed
(and possibly skewed) noise. In particular, the latent process
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• The latent process !! consists in a time-varying 

spatial physical phenomenon.xt consists in a time-varying spatial physical phenomenon of
size nx = 100 on a one-dimensional spatial domain [1, 100]
with ny = 75 randomly chosen observation locations. Let us
consider the prior pdf of the state to be defined as:

ft(xt|xt−1) = N (xt;M(xt−1),Q) , (11)

where Q is based on a powered exponential covariance func-
tion with power 1.8 and scale parameter 10 and . We also
assumed σt = 0.2, µγ = 0 and σγ = 1 in Rt(θt) to be
known for all numerical experiments. The known vector Ct

in the likelihood is considered to be composed of binary vari-
ables which could reflect the quality of the sensors, i.e. the
presence of a zero means that the observation noise is not
skewed whereas a one means that the noise is possibly skewed
and thus characterized by an unknown skewness parameter γt
which will be estimated with the proposed approach. In all
experiments, 50% of the values have been set to 1 at random
observation locations.

The proposed approach is compared, using 100 Monte
Carlo runs, with the standard EnKF and the GEnKF [11]
which assume that the observation noise is Gaussian and t-
distributed, respectively. For all EnKF-based algorithms, the
sparse matrix Kt used to obtain a regularized estimate covari-
ance matrix estimate is constructed using the same Wendland
taper function with tapering length 20. The ensemble size N
is 1500, 30 and 30 for the EnKF, the GEnKF and the proposed
GH-GEnKF, respectively. 50 Gibbs iterations have been used
for both the GEnKF and the GH-GEnKF. Performances of
particle filters with a prior proposal prior for the parameters
(θt, γt) and either prior or optimal1 proposal for the state
process, both having 1500 particles, are also reported.

Let us start by considering the following linear dynamics
M(xt−1) = 0.9xt−1. As shown by Figure 1 and more pre-
cisely by the mean squared error on the state process reported
in Table 1, both the GEnKF and the proposed GH-GEnKF
obtain very good results in this scenario for which the ob-
servation errors are t-distributed. When the skewness param-
eter of the observation error distribution, γ, is set to 0, the
GEnKF is the “ideal” case of the proposed GH-GEnKF. In-
deed, this parameter is estimated in the GH-GEnKF whereas
it is exactly set to 0 for the GEnKF since this latter consider
only not skewed t-distribution. The very close results, when
γ = 0, thus show that the proposed approach is able to cor-
rectly and automatically detect the absence of skewness in
the data. However, in the presence of heavy-tailed and neg-
atively skewed (γ = −2) observation errors, the proposed
GH-GEnKF significantly outperforms the GEnKF.

Let us finally consider the severely nonlinear evolution
dynamics used in [26] and defined for l = 1, . . . , nx by:

[M(xt−1)]l =
xt−1,l

2
+

25xt−1,l

1 + x2
t−1,l

. (12)

1which is possible due to the conditional Gaussian distribution assump-
tion of both the prior in (11) and likelihood in (8)
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Fig. 1. Simulated state and associated observations at time
t = 3, together with posterior means obtained by the various
methods with model parameters: γ = −2, λ = −1.5, χ =
−2λ and ψ = 0.
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Table 1. Mean squared error (MSE) on the state xt averaged
over time for the different filtering techniques when the state
transition is linear and observation errors are t-distributed
with two different skewness value γ (λ = −1.5, χ = −2λ,
ψ = 0).

Results in Table 2 show that the proposed algorithm out-
performs significantly both the particle filters and other
ensemble-based approaches in this nonlinear setting.

5. CONCLUSION

Ensemble Kalman filtering techniques are interesting Monte
Carlo techniques for inference in high-dimensional systems.
Unfortunately, these approaches performs poorly in the pres-
ence of heavy-tailed errors such as outliers. In this paper, a ro-
bust ensemble Kalman filter is proposed which is able to deal
with high-dimensional state process in the presence of heavy-
tailed and skewed observation errors. Numerical simulations
empirically show that this proposed GH-GEnKF outperforms
existing techniques.
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χ = 0.5, γ = 0 0.51 37.40 1.15 0.46 0.37

Table 2. Mean squared error (MSE) on the state xt averaged
over time when the state transition is nonlinear (Eq. (12)) for
different values of χ which is related to the scale of the GH
distribution (λ = −2.5,ψ = 0).
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size nx = 100 on a one-dimensional spatial domain [1, 100]
with ny = 75 randomly chosen observation locations. Let us
consider the prior pdf of the state to be defined as:

ft(xt|xt−1) = N (xt;M(xt−1),Q) , (11)

where Q is based on a powered exponential covariance func-
tion with power 1.8 and scale parameter 10 and . We also
assumed σt = 0.2, µγ = 0 and σγ = 1 in Rt(θt) to be
known for all numerical experiments. The known vector Ct

in the likelihood is considered to be composed of binary vari-
ables which could reflect the quality of the sensors, i.e. the
presence of a zero means that the observation noise is not
skewed whereas a one means that the noise is possibly skewed
and thus characterized by an unknown skewness parameter γt
which will be estimated with the proposed approach. In all
experiments, 50% of the values have been set to 1 at random
observation locations.

The proposed approach is compared, using 100 Monte
Carlo runs, with the standard EnKF and the GEnKF [11]
which assume that the observation noise is Gaussian and t-
distributed, respectively. For all EnKF-based algorithms, the
sparse matrix Kt used to obtain a regularized estimate covari-
ance matrix estimate is constructed using the same Wendland
taper function with tapering length 20. The ensemble size N
is 1500, 30 and 30 for the EnKF, the GEnKF and the proposed
GH-GEnKF, respectively. 50 Gibbs iterations have been used
for both the GEnKF and the GH-GEnKF. Performances of
particle filters with a prior proposal prior for the parameters
(θt, γt) and either prior or optimal1 proposal for the state
process, both having 1500 particles, are also reported.

Let us start by considering the following linear dynamics
M(xt−1) = 0.9xt−1. As shown by Figure 1 and more pre-
cisely by the mean squared error on the state process reported
in Table 1, both the GEnKF and the proposed GH-GEnKF
obtain very good results in this scenario for which the ob-
servation errors are t-distributed. When the skewness param-
eter of the observation error distribution, γ, is set to 0, the
GEnKF is the “ideal” case of the proposed GH-GEnKF. In-
deed, this parameter is estimated in the GH-GEnKF whereas
it is exactly set to 0 for the GEnKF since this latter consider
only not skewed t-distribution. The very close results, when
γ = 0, thus show that the proposed approach is able to cor-
rectly and automatically detect the absence of skewness in
the data. However, in the presence of heavy-tailed and neg-
atively skewed (γ = −2) observation errors, the proposed
GH-GEnKF significantly outperforms the GEnKF.

Let us finally consider the severely nonlinear evolution
dynamics used in [26] and defined for l = 1, . . . , nx by:

[M(xt−1)]l =
xt−1,l
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. (12)

1which is possible due to the conditional Gaussian distribution assump-
tion of both the prior in (11) and likelihood in (8)
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the data. However, in the presence of heavy-tailed and neg-
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obtain very good results in this scenario for which the ob-
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GEnKF is the “ideal” case of the proposed GH-GEnKF. In-
deed, this parameter is estimated in the GH-GEnKF whereas
it is exactly set to 0 for the GEnKF since this latter consider
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process, both having 1500 particles, are also reported.
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obtain very good results in this scenario for which the ob-
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eter of the observation error distribution, γ, is set to 0, the
GEnKF is the “ideal” case of the proposed GH-GEnKF. In-
deed, this parameter is estimated in the GH-GEnKF whereas
it is exactly set to 0 for the GEnKF since this latter consider
only not skewed t-distribution. The very close results, when
γ = 0, thus show that the proposed approach is able to cor-
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over time for the different filtering techniques when the state
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Results in Table 2 show that the proposed algorithm out-
performs significantly both the particle filters and other
ensemble-based approaches in this nonlinear setting.

5. CONCLUSION

Ensemble Kalman filtering techniques are interesting Monte
Carlo techniques for inference in high-dimensional systems.
Unfortunately, these approaches performs poorly in the pres-
ence of heavy-tailed errors such as outliers. In this paper, a ro-
bust ensemble Kalman filter is proposed which is able to deal
with high-dimensional state process in the presence of heavy-
tailed and skewed observation errors. Numerical simulations
empirically show that this proposed GH-GEnKF outperforms
existing techniques.
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Table 2. Mean squared error (MSE) on the state xt averaged
over time when the state transition is nonlinear (Eq. (12)) for
different values of χ which is related to the scale of the GH
distribution (λ = −2.5,ψ = 0).

Conclusion

• A robust ensemble Kalman filter is proposed which is
able to deal with high-dimensional state process in the
presence of heavy-tailed and skewed observation
errors.
• Numerical simulations empirically show that this
proposed GH-GEnKF outperforms existing ensemble
Kalman filtering techniques.

• Parameter setting in GH-GEnKF

outliers. The derivation of the resulting inference algorithm,
the GEnKF, based on a combination of an EnKF and a Gibbs
sampler [19] is possible by utilizing, through a hierarchical
SSM, the fact that the Student t-distribution belongs to the
class of scale mixtures of normals [20, 21].

In this work, we propose to extend this work by introduc-
ing a more general distribution, the generalized hyperbolic
(GH) distribution, for modeling the outliers, thus allowing us
to capture more practical cases with possibly skewed data. In
this section, we firstly introduce the GH distribution and then
the proposed filtering GH-GEnKF approach is described.

3.1. The generalized hyperbolic distribution

In this paper, we propose to use a more general model for the
measurements, which incorporate the one in [11] as a special
case. More specifically, a normal variance-mean mixture [12]
is considered as the distribution of the measurements, i.e.

y = µ+ θγ + σ
√
θz, (7)

where θ and z are independent scalar random variables, z ∼
N (0, 1), θ has a density (the mixing density) supported on
(0,∞) and σ > 0 and γ are constants. Normal variance-mean
mixtures encompass a large family of distributions commonly
used in many applied fields. A prominent example is the gen-
eralized hyperbolic (GH) distribution [22] that arises as the
density of y in Eq. (7) if we let the density of θ be the gener-
alized inverse Gaussian (GIG) which depends on 3 parameters
(λ ∈ R,χ ≥ 0,ψ ≥ 0). The GH density is extremely flexible
as it allows us to model heavy-tailed and skewed data. More-
over, the GH distribution includes the Student t, Laplace, hy-
perbolic, normal inverse Gaussian, and variance gamma den-
sities as special cases. This distribution has received, until
now, a lot of attention more in the financial-modeling litera-
ture [23, 24] and only quite recently in the signal processing
literature for modeling some complex spatio-temporal pro-
cess [25].

3.2. The stochastic GH-GEnKF

In this work, we propose to use the GH distribution as likeli-
hood in order to obtain a general filtering technique robust to
outliers. By considering that at each time t, the ny measure-
ments are independently GH-distributed, the following hierar-
chical SSM can be written by using the normal variance-mean
mixture representation of a GH random variable in Eq. (7):

yt|xt,θt, γt ∼ N (Htxt + γtCt ◦ θt,Rt(θt)) ,

xt|xt−1 ∼ ft(xt|xt−1),

θt,n ∼ GIG(λt,χt,ψt) for n = 1, . . . , ny,

γt ∼ N
(
µγ ,σ

2

γ

)
,

(8)

where γt corresponds to the skewness parameter of the GH
distribution and Rt(θt) = σ2

t diag(θt,1, . . . , θt,ny
). For sim-

plicity, the parameters (λt, χt, ψt, σ
2
t ) are assumed to be

known (and static) but they could be easily incorporated in the
proposed estimation procedure. Finally, Ct is a known vector
composed of explanatory variables (that will be discussed in
Section 4).

As in [11], the forecast independence of states and param-
eters is implied since the parameters (θt, γt) do not appear in
ft(xt|xt−1) and are temporally independent, i.e.

p(xt|θt, γt,y1:t−1) = p(xt|y1:t−1)p(θt, γt|y1:t−1), (9)

which enables inference based on a single ensemble. As a
consequence, the joint distribution of all variables at time t is
given by:

p(yt,xt,θt, γt|y1:t−1) = p(yt|xt,θt, γt)p(θt)p(γt)

× p(xt|y1:t−1).
(10)

Therefore as summarized in Algo 2, the proposed GH-
GEnKf consists in iteratively samples xt, θt and γt from their
respective full conditional distributions which can be obtained
analytically owing to the conjugacy properties of involved
distributions in Eq. (10).

Algorithm 2 Stochastic GH-GEnKF

Start with an initial ensemble {xi
0|0,θ

i
0, γ

i
0}j=1,...,N drawn from

p(x0)p(θ0)p(γ0)
for t = 1, . . . , T do # at each time

Propagate the ensemble: for j = 1, . . . , N

xj
t|t−1 ∼ ft(xt|x

j
t−1|t−1)

Update the ensemble: repeat the following steps until conver-

gence # Gibbs sampler

for j = 1, . . . , N do

a) Compute the EnKF update:

xj
t|t = xj

t|t−1+K̂t(θ
j
t )

[
yt + εjt −Htx

j
t|t−1 − γj

tCt ◦ θ
j
t

]

with εjt ∼ N
(
0,Rt(θ

j
t )
)

b) Sample θit,l|y1:t,x
j
t|t, γ

i
t ∼ GIG(λ − 1

2 ,χ +
(yt,l−[Htxt]l)

2

σ2
t

,ψ +
(γi

tCt,l)
2

σ2
t

) for l = 1, . . . , ny

c) Sample γi
t |y1:t,x

j
t|t,θ

i
t ∼ N

(
µ̃j
γ , (σ̃

j
γ)

2
)

with

µ̃j
γ = µγ + Γj

t(yt −Htx
j
t|t − µγCt ◦ θj

t ) (σ̃
j
γ)

2 = (1 −

Γj
tCt ◦ θ

j
t )σ

2
γ and

Γj
t = σ2

γ(Ct◦θ
j
t )

T
[
σ2
γ(Ct ◦ θ

j
t )(Ct ◦ θ

j
t )

T +R(θj
t )
]−1

end for

end for

4. NUMERICAL SIMULATIONS

In this section, we empirically study the performances of
the proposed GH-GEnKF in a challenging high-dimensional
problem where observations are corrupted by heavy-tailed
(and possibly skewed) noise. In particular, the latent process

outliers. The derivation of the resulting inference algorithm,
the GEnKF, based on a combination of an EnKF and a Gibbs
sampler [19] is possible by utilizing, through a hierarchical
SSM, the fact that the Student t-distribution belongs to the
class of scale mixtures of normals [20, 21].

In this work, we propose to extend this work by introduc-
ing a more general distribution, the generalized hyperbolic
(GH) distribution, for modeling the outliers, thus allowing us
to capture more practical cases with possibly skewed data. In
this section, we firstly introduce the GH distribution and then
the proposed filtering GH-GEnKF approach is described.

3.1. The generalized hyperbolic distribution

In this paper, we propose to use a more general model for the
measurements, which incorporate the one in [11] as a special
case. More specifically, a normal variance-mean mixture [12]
is considered as the distribution of the measurements, i.e.

y = µ+ θγ + σ
√
θz, (7)

where θ and z are independent scalar random variables, z ∼
N (0, 1), θ has a density (the mixing density) supported on
(0,∞) and σ > 0 and γ are constants. Normal variance-mean
mixtures encompass a large family of distributions commonly
used in many applied fields. A prominent example is the gen-
eralized hyperbolic (GH) distribution [22] that arises as the
density of y in Eq. (7) if we let the density of θ be the gener-
alized inverse Gaussian (GIG) which depends on 3 parameters
(λ ∈ R,χ ≥ 0,ψ ≥ 0). The GH density is extremely flexible
as it allows us to model heavy-tailed and skewed data. More-
over, the GH distribution includes the Student t, Laplace, hy-
perbolic, normal inverse Gaussian, and variance gamma den-
sities as special cases. This distribution has received, until
now, a lot of attention more in the financial-modeling litera-
ture [23, 24] and only quite recently in the signal processing
literature for modeling some complex spatio-temporal pro-
cess [25].

3.2. The stochastic GH-GEnKF

In this work, we propose to use the GH distribution as likeli-
hood in order to obtain a general filtering technique robust to
outliers. By considering that at each time t, the ny measure-
ments are independently GH-distributed, the following hierar-
chical SSM can be written by using the normal variance-mean
mixture representation of a GH random variable in Eq. (7):

yt|xt,θt, γt ∼ N (Htxt + γtCt ◦ θt,Rt(θt)) ,

xt|xt−1 ∼ ft(xt|xt−1),

θt,n ∼ GIG(λt,χt,ψt) for n = 1, . . . , ny,

γt ∼ N
(
µγ ,σ

2

γ

)
,

(8)

where γt corresponds to the skewness parameter of the GH
distribution and Rt(θt) = σ2

t diag(θt,1, . . . , θt,ny
). For sim-

plicity, the parameters (λt, χt, ψt, σ
2
t ) are assumed to be

known (and static) but they could be easily incorporated in the
proposed estimation procedure. Finally, Ct is a known vector
composed of explanatory variables (that will be discussed in
Section 4).

As in [11], the forecast independence of states and param-
eters is implied since the parameters (θt, γt) do not appear in
ft(xt|xt−1) and are temporally independent, i.e.

p(xt|θt, γt,y1:t−1) = p(xt|y1:t−1)p(θt, γt|y1:t−1), (9)

which enables inference based on a single ensemble. As a
consequence, the joint distribution of all variables at time t is
given by:

p(yt,xt,θt, γt|y1:t−1) = p(yt|xt,θt, γt)p(θt)p(γt)

× p(xt|y1:t−1).
(10)

Therefore as summarized in Algo 2, the proposed GH-
GEnKf consists in iteratively samples xt, θt and γt from their
respective full conditional distributions which can be obtained
analytically owing to the conjugacy properties of involved
distributions in Eq. (10).

Algorithm 2 Stochastic GH-GEnKF

Start with an initial ensemble {xi
0|0,θ

i
0, γ

i
0}j=1,...,N drawn from

p(x0)p(θ0)p(γ0)
for t = 1, . . . , T do # at each time

Propagate the ensemble: for j = 1, . . . , N

xj
t|t−1 ∼ ft(xt|x

j
t−1|t−1)

Update the ensemble: repeat the following steps until conver-

gence # Gibbs sampler

for j = 1, . . . , N do

a) Compute the EnKF update:

xj
t|t = xj

t|t−1+K̂t(θ
j
t )

[
yt + εjt −Htx

j
t|t−1 − γj

tCt ◦ θ
j
t

]

with εjt ∼ N
(
0,Rt(θ

j
t )
)

b) Sample θit,l|y1:t,x
j
t|t, γ

i
t ∼ GIG(λ − 1

2 ,χ +
(yt,l−[Htxt]l)

2

σ2
t

,ψ +
(γi

tCt,l)
2

σ2
t

) for l = 1, . . . , ny

c) Sample γi
t |y1:t,x

j
t|t,θ

i
t ∼ N

(
µ̃j
γ , (σ̃

j
γ)

2
)

with

µ̃j
γ = µγ + Γj

t(yt −Htx
j
t|t − µγCt ◦ θj

t ) (σ̃
j
γ)

2 = (1 −

Γj
tCt ◦ θ

j
t )σ

2
γ and

Γj
t = σ2

γ(Ct◦θ
j
t )

T
[
σ2
γ(Ct ◦ θ

j
t )(Ct ◦ θ

j
t )

T +R(θj
t )
]−1

end for

end for

4. NUMERICAL SIMULATIONS

In this section, we empirically study the performances of
the proposed GH-GEnKF in a challenging high-dimensional
problem where observations are corrupted by heavy-tailed
(and possibly skewed) noise. In particular, the latent process

outliers. The derivation of the resulting inference algorithm,
the GEnKF, based on a combination of an EnKF and a Gibbs
sampler [19] is possible by utilizing, through a hierarchical
SSM, the fact that the Student t-distribution belongs to the
class of scale mixtures of normals [20, 21].

In this work, we propose to extend this work by introduc-
ing a more general distribution, the generalized hyperbolic
(GH) distribution, for modeling the outliers, thus allowing us
to capture more practical cases with possibly skewed data. In
this section, we firstly introduce the GH distribution and then
the proposed filtering GH-GEnKF approach is described.

3.1. The generalized hyperbolic distribution

In this paper, we propose to use a more general model for the
measurements, which incorporate the one in [11] as a special
case. More specifically, a normal variance-mean mixture [12]
is considered as the distribution of the measurements, i.e.

y = µ+ θγ + σ
√
θz, (7)

where θ and z are independent scalar random variables, z ∼
N (0, 1), θ has a density (the mixing density) supported on
(0,∞) and σ > 0 and γ are constants. Normal variance-mean
mixtures encompass a large family of distributions commonly
used in many applied fields. A prominent example is the gen-
eralized hyperbolic (GH) distribution [22] that arises as the
density of y in Eq. (7) if we let the density of θ be the gener-
alized inverse Gaussian (GIG) which depends on 3 parameters
(λ ∈ R,χ ≥ 0,ψ ≥ 0). The GH density is extremely flexible
as it allows us to model heavy-tailed and skewed data. More-
over, the GH distribution includes the Student t, Laplace, hy-
perbolic, normal inverse Gaussian, and variance gamma den-
sities as special cases. This distribution has received, until
now, a lot of attention more in the financial-modeling litera-
ture [23, 24] and only quite recently in the signal processing
literature for modeling some complex spatio-temporal pro-
cess [25].

3.2. The stochastic GH-GEnKF

In this work, we propose to use the GH distribution as likeli-
hood in order to obtain a general filtering technique robust to
outliers. By considering that at each time t, the ny measure-
ments are independently GH-distributed, the following hierar-
chical SSM can be written by using the normal variance-mean
mixture representation of a GH random variable in Eq. (7):

yt|xt,θt, γt ∼ N (Htxt + γtCt ◦ θt,Rt(θt)) ,

xt|xt−1 ∼ ft(xt|xt−1),

θt,n ∼ GIG(λt,χt,ψt) for n = 1, . . . , ny,

γt ∼ N
(
µγ ,σ

2

γ

)
,

(8)

where γt corresponds to the skewness parameter of the GH
distribution and Rt(θt) = σ2

t diag(θt,1, . . . , θt,ny
). For sim-

plicity, the parameters (λt, χt, ψt, σ
2
t ) are assumed to be

known (and static) but they could be easily incorporated in the
proposed estimation procedure. Finally, Ct is a known vector
composed of explanatory variables (that will be discussed in
Section 4).

As in [11], the forecast independence of states and param-
eters is implied since the parameters (θt, γt) do not appear in
ft(xt|xt−1) and are temporally independent, i.e.

p(xt|θt, γt,y1:t−1) = p(xt|y1:t−1)p(θt, γt|y1:t−1), (9)

which enables inference based on a single ensemble. As a
consequence, the joint distribution of all variables at time t is
given by:

p(yt,xt,θt, γt|y1:t−1) = p(yt|xt,θt, γt)p(θt)p(γt)

× p(xt|y1:t−1).
(10)

Therefore as summarized in Algo 2, the proposed GH-
GEnKf consists in iteratively samples xt, θt and γt from their
respective full conditional distributions which can be obtained
analytically owing to the conjugacy properties of involved
distributions in Eq. (10).

Algorithm 2 Stochastic GH-GEnKF

Start with an initial ensemble {xi
0|0,θ

i
0, γ

i
0}j=1,...,N drawn from

p(x0)p(θ0)p(γ0)
for t = 1, . . . , T do # at each time

Propagate the ensemble: for j = 1, . . . , N

xj
t|t−1 ∼ ft(xt|x

j
t−1|t−1)

Update the ensemble: repeat the following steps until conver-

gence # Gibbs sampler

for j = 1, . . . , N do

a) Compute the EnKF update:

xj
t|t = xj

t|t−1+K̂t(θ
j
t )

[
yt + εjt −Htx

j
t|t−1 − γj

tCt ◦ θ
j
t

]

with εjt ∼ N
(
0,Rt(θ

j
t )
)

b) Sample θit,l|y1:t,x
j
t|t, γ

i
t ∼ GIG(λ − 1

2 ,χ +
(yt,l−[Htxt]l)

2

σ2
t

,ψ +
(γi

tCt,l)
2

σ2
t

) for l = 1, . . . , ny

c) Sample γi
t |y1:t,x

j
t|t,θ

i
t ∼ N

(
µ̃j
γ , (σ̃

j
γ)

2
)

with

µ̃j
γ = µγ + Γj

t(yt −Htx
j
t|t − µγCt ◦ θj

t ) (σ̃
j
γ)

2 = (1 −

Γj
tCt ◦ θ

j
t )σ

2
γ and

Γj
t = σ2

γ(Ct◦θ
j
t )

T
[
σ2
γ(Ct ◦ θ

j
t )(Ct ◦ θ

j
t )

T +R(θj
t )
]−1

end for

end for

4. NUMERICAL SIMULATIONS

In this section, we empirically study the performances of
the proposed GH-GEnKF in a challenging high-dimensional
problem where observations are corrupted by heavy-tailed
(and possibly skewed) noise. In particular, the latent process

outliers. The derivation of the resulting inference algorithm,
the GEnKF, based on a combination of an EnKF and a Gibbs
sampler [19] is possible by utilizing, through a hierarchical
SSM, the fact that the Student t-distribution belongs to the
class of scale mixtures of normals [20, 21].

In this work, we propose to extend this work by introduc-
ing a more general distribution, the generalized hyperbolic
(GH) distribution, for modeling the outliers, thus allowing us
to capture more practical cases with possibly skewed data. In
this section, we firstly introduce the GH distribution and then
the proposed filtering GH-GEnKF approach is described.

3.1. The generalized hyperbolic distribution

In this paper, we propose to use a more general model for the
measurements, which incorporate the one in [11] as a special
case. More specifically, a normal variance-mean mixture [12]
is considered as the distribution of the measurements, i.e.

y = µ+ θγ + σ
√
θz, (7)

where θ and z are independent scalar random variables, z ∼
N (0, 1), θ has a density (the mixing density) supported on
(0,∞) and σ > 0 and γ are constants. Normal variance-mean
mixtures encompass a large family of distributions commonly
used in many applied fields. A prominent example is the gen-
eralized hyperbolic (GH) distribution [22] that arises as the
density of y in Eq. (7) if we let the density of θ be the gener-
alized inverse Gaussian (GIG) which depends on 3 parameters
(λ ∈ R,χ ≥ 0,ψ ≥ 0). The GH density is extremely flexible
as it allows us to model heavy-tailed and skewed data. More-
over, the GH distribution includes the Student t, Laplace, hy-
perbolic, normal inverse Gaussian, and variance gamma den-
sities as special cases. This distribution has received, until
now, a lot of attention more in the financial-modeling litera-
ture [23, 24] and only quite recently in the signal processing
literature for modeling some complex spatio-temporal pro-
cess [25].

3.2. The stochastic GH-GEnKF

In this work, we propose to use the GH distribution as likeli-
hood in order to obtain a general filtering technique robust to
outliers. By considering that at each time t, the ny measure-
ments are independently GH-distributed, the following hierar-
chical SSM can be written by using the normal variance-mean
mixture representation of a GH random variable in Eq. (7):

yt|xt,θt, γt ∼ N (Htxt + γtCt ◦ θt,Rt(θt)) ,

xt|xt−1 ∼ ft(xt|xt−1),

θt,n ∼ GIG(λt,χt,ψt) for n = 1, . . . , ny,

γt ∼ N
(
µγ ,σ

2

γ

)
,

(8)

where γt corresponds to the skewness parameter of the GH
distribution and Rt(θt) = σ2

t diag(θt,1, . . . , θt,ny
). For sim-

plicity, the parameters (λt, χt, ψt, σ
2
t ) are assumed to be

known (and static) but they could be easily incorporated in the
proposed estimation procedure. Finally, Ct is a known vector
composed of explanatory variables (that will be discussed in
Section 4).

As in [11], the forecast independence of states and param-
eters is implied since the parameters (θt, γt) do not appear in
ft(xt|xt−1) and are temporally independent, i.e.

p(xt|θt, γt,y1:t−1) = p(xt|y1:t−1)p(θt, γt|y1:t−1), (9)

which enables inference based on a single ensemble. As a
consequence, the joint distribution of all variables at time t is
given by:

p(yt,xt,θt, γt|y1:t−1) = p(yt|xt,θt, γt)p(θt)p(γt)

× p(xt|y1:t−1).
(10)

Therefore as summarized in Algo 2, the proposed GH-
GEnKf consists in iteratively samples xt, θt and γt from their
respective full conditional distributions which can be obtained
analytically owing to the conjugacy properties of involved
distributions in Eq. (10).

Algorithm 2 Stochastic GH-GEnKF

Start with an initial ensemble {xi
0|0,θ

i
0, γ

i
0}j=1,...,N drawn from

p(x0)p(θ0)p(γ0)
for t = 1, . . . , T do # at each time

Propagate the ensemble: for j = 1, . . . , N

xj
t|t−1 ∼ ft(xt|x

j
t−1|t−1)

Update the ensemble: repeat the following steps until conver-

gence # Gibbs sampler

for j = 1, . . . , N do

a) Compute the EnKF update:

xj
t|t = xj

t|t−1+K̂t(θ
j
t )

[
yt + εjt −Htx

j
t|t−1 − γj

tCt ◦ θ
j
t

]

with εjt ∼ N
(
0,Rt(θ

j
t )
)

b) Sample θit,l|y1:t,x
j
t|t, γ

i
t ∼ GIG(λ − 1

2 ,χ +
(yt,l−[Htxt]l)

2

σ2
t

,ψ +
(γi

tCt,l)
2

σ2
t

) for l = 1, . . . , ny

c) Sample γi
t |y1:t,x

j
t|t,θ

i
t ∼ N

(
µ̃j
γ , (σ̃

j
γ)

2
)

with

µ̃j
γ = µγ + Γj

t(yt −Htx
j
t|t − µγCt ◦ θj

t ) (σ̃
j
γ)

2 = (1 −

Γj
tCt ◦ θ

j
t )σ

2
γ and

Γj
t = σ2

γ(Ct◦θ
j
t )

T
[
σ2
γ(Ct ◦ θ

j
t )(Ct ◦ θ

j
t )

T +R(θj
t )
]−1

end for

end for

4. NUMERICAL SIMULATIONS

In this section, we empirically study the performances of
the proposed GH-GEnKF in a challenging high-dimensional
problem where observations are corrupted by heavy-tailed
(and possibly skewed) noise. In particular, the latent process

10

outliers. The derivation of the resulting inference algorithm,
the GEnKF, based on a combination of an EnKF and a Gibbs
sampler [19] is possible by utilizing, through a hierarchical
SSM, the fact that the Student t-distribution belongs to the
class of scale mixtures of normals [20, 21].

In this work, we propose to extend this work by introduc-
ing a more general distribution, the generalized hyperbolic
(GH) distribution, for modeling the outliers, thus allowing us
to capture more practical cases with possibly skewed data. In
this section, we firstly introduce the GH distribution and then
the proposed filtering GH-GEnKF approach is described.

3.1. The generalized hyperbolic distribution

In this paper, we propose to use a more general model for the
measurements, which incorporate the one in [11] as a special
case. More specifically, a normal variance-mean mixture [12]
is considered as the distribution of the measurements, i.e.

y = µ+ θγ + σ
√
θz, (7)

where θ and z are independent scalar random variables, z ∼
N (0, 1), θ has a density (the mixing density) supported on
(0,∞) and σ > 0 and γ are constants. Normal variance-mean
mixtures encompass a large family of distributions commonly
used in many applied fields. A prominent example is the gen-
eralized hyperbolic (GH) distribution [22] that arises as the
density of y in Eq. (7) if we let the density of θ be the gener-
alized inverse Gaussian (GIG) which depends on 3 parameters
(λ ∈ R,χ ≥ 0,ψ ≥ 0). The GH density is extremely flexible
as it allows us to model heavy-tailed and skewed data. More-
over, the GH distribution includes the Student t, Laplace, hy-
perbolic, normal inverse Gaussian, and variance gamma den-
sities as special cases. This distribution has received, until
now, a lot of attention more in the financial-modeling litera-
ture [23, 24] and only quite recently in the signal processing
literature for modeling some complex spatio-temporal pro-
cess [25].

3.2. The stochastic GH-GEnKF

In this work, we propose to use the GH distribution as likeli-
hood in order to obtain a general filtering technique robust to
outliers. By considering that at each time t, the ny measure-
ments are independently GH-distributed, the following hierar-
chical SSM can be written by using the normal variance-mean
mixture representation of a GH random variable in Eq. (7):

yt|xt,θt, γt ∼ N (Htxt + γtCt ◦ θt,Rt(θt)) ,

xt|xt−1 ∼ ft(xt|xt−1),

θt,n ∼ GIG(λt,χt,ψt) for n = 1, . . . , ny,

γt ∼ N
(
µγ ,σ

2

γ

)
,

(8)

where γt corresponds to the skewness parameter of the GH
distribution and Rt(θt) = σ2

t diag(θt,1, . . . , θt,ny
). For sim-

plicity, the parameters (λt, χt, ψt, σ
2
t ) are assumed to be

known (and static) but they could be easily incorporated in the
proposed estimation procedure. Finally, Ct is a known vector
composed of explanatory variables (that will be discussed in
Section 4).

As in [11], the forecast independence of states and param-
eters is implied since the parameters (θt, γt) do not appear in
ft(xt|xt−1) and are temporally independent, i.e.

p(xt|θt, γt,y1:t−1) = p(xt|y1:t−1)p(θt, γt|y1:t−1), (9)

which enables inference based on a single ensemble. As a
consequence, the joint distribution of all variables at time t is
given by:

p(yt,xt,θt, γt|y1:t−1) = p(yt|xt,θt, γt)p(θt)p(γt)

× p(xt|y1:t−1).
(10)

Therefore as summarized in Algo 2, the proposed GH-
GEnKf consists in iteratively samples xt, θt and γt from their
respective full conditional distributions which can be obtained
analytically owing to the conjugacy properties of involved
distributions in Eq. (10).

Algorithm 2 Stochastic GH-GEnKF

Start with an initial ensemble {xi
0|0,θ

i
0, γ

i
0}j=1,...,N drawn from

p(x0)p(θ0)p(γ0)
for t = 1, . . . , T do # at each time

Propagate the ensemble: for j = 1, . . . , N

xj
t|t−1 ∼ ft(xt|x

j
t−1|t−1)

Update the ensemble: repeat the following steps until conver-

gence # Gibbs sampler

for j = 1, . . . , N do

a) Compute the EnKF update:

xj
t|t = xj

t|t−1+K̂t(θ
j
t )

[
yt + εjt −Htx

j
t|t−1 − γj

tCt ◦ θ
j
t

]

with εjt ∼ N
(
0,Rt(θ

j
t )
)

b) Sample θit,l|y1:t,x
j
t|t, γ

i
t ∼ GIG(λ − 1

2 ,χ +
(yt,l−[Htxt]l)

2

σ2
t

,ψ +
(γi

tCt,l)
2

σ2
t

) for l = 1, . . . , ny

c) Sample γi
t |y1:t,x

j
t|t,θ

i
t ∼ N

(
µ̃j
γ , (σ̃

j
γ)

2
)

with

µ̃j
γ = µγ + Γj

t(yt −Htx
j
t|t − µγCt ◦ θj

t ) (σ̃
j
γ)

2 = (1 −

Γj
tCt ◦ θ

j
t )σ

2
γ and

Γj
t = σ2

γ(Ct◦θ
j
t )

T
[
σ2
γ(Ct ◦ θ

j
t )(Ct ◦ θ

j
t )

T +R(θj
t )
]−1

end for

end for

4. NUMERICAL SIMULATIONS

In this section, we empirically study the performances of
the proposed GH-GEnKF in a challenging high-dimensional
problem where observations are corrupted by heavy-tailed
(and possibly skewed) noise. In particular, the latent process

1
outliers. The derivation of the resulting inference algorithm,
the GEnKF, based on a combination of an EnKF and a Gibbs
sampler [19] is possible by utilizing, through a hierarchical
SSM, the fact that the Student t-distribution belongs to the
class of scale mixtures of normals [20, 21].

In this work, we propose to extend this work by introduc-
ing a more general distribution, the generalized hyperbolic
(GH) distribution, for modeling the outliers, thus allowing us
to capture more practical cases with possibly skewed data. In
this section, we firstly introduce the GH distribution and then
the proposed filtering GH-GEnKF approach is described.

3.1. The generalized hyperbolic distribution

In this paper, we propose to use a more general model for the
measurements, which incorporate the one in [11] as a special
case. More specifically, a normal variance-mean mixture [12]
is considered as the distribution of the measurements, i.e.

y = µ+ θγ + σ
√
θz, (7)

where θ and z are independent scalar random variables, z ∼
N (0, 1), θ has a density (the mixing density) supported on
(0,∞) and σ > 0 and γ are constants. Normal variance-mean
mixtures encompass a large family of distributions commonly
used in many applied fields. A prominent example is the gen-
eralized hyperbolic (GH) distribution [22] that arises as the
density of y in Eq. (7) if we let the density of θ be the gener-
alized inverse Gaussian (GIG) which depends on 3 parameters
(λ ∈ R,χ ≥ 0,ψ ≥ 0). The GH density is extremely flexible
as it allows us to model heavy-tailed and skewed data. More-
over, the GH distribution includes the Student t, Laplace, hy-
perbolic, normal inverse Gaussian, and variance gamma den-
sities as special cases. This distribution has received, until
now, a lot of attention more in the financial-modeling litera-
ture [23, 24] and only quite recently in the signal processing
literature for modeling some complex spatio-temporal pro-
cess [25].

3.2. The stochastic GH-GEnKF

In this work, we propose to use the GH distribution as likeli-
hood in order to obtain a general filtering technique robust to
outliers. By considering that at each time t, the ny measure-
ments are independently GH-distributed, the following hierar-
chical SSM can be written by using the normal variance-mean
mixture representation of a GH random variable in Eq. (7):

yt|xt,θt, γt ∼ N (Htxt + γtCt ◦ θt,Rt(θt)) ,

xt|xt−1 ∼ ft(xt|xt−1),

θt,n ∼ GIG(λt,χt,ψt) for n = 1, . . . , ny,

γt ∼ N
(
µγ ,σ

2

γ

)
,

(8)

where γt corresponds to the skewness parameter of the GH
distribution and Rt(θt) = σ2

t diag(θt,1, . . . , θt,ny
). For sim-

plicity, the parameters (λt, χt, ψt, σ
2
t ) are assumed to be

known (and static) but they could be easily incorporated in the
proposed estimation procedure. Finally, Ct is a known vector
composed of explanatory variables (that will be discussed in
Section 4).

As in [11], the forecast independence of states and param-
eters is implied since the parameters (θt, γt) do not appear in
ft(xt|xt−1) and are temporally independent, i.e.

p(xt|θt, γt,y1:t−1) = p(xt|y1:t−1)p(θt, γt|y1:t−1), (9)

which enables inference based on a single ensemble. As a
consequence, the joint distribution of all variables at time t is
given by:

p(yt,xt,θt, γt|y1:t−1) = p(yt|xt,θt, γt)p(θt)p(γt)

× p(xt|y1:t−1).
(10)

Therefore as summarized in Algo 2, the proposed GH-
GEnKf consists in iteratively samples xt, θt and γt from their
respective full conditional distributions which can be obtained
analytically owing to the conjugacy properties of involved
distributions in Eq. (10).

Algorithm 2 Stochastic GH-GEnKF

Start with an initial ensemble {xi
0|0,θ

i
0, γ

i
0}j=1,...,N drawn from

p(x0)p(θ0)p(γ0)
for t = 1, . . . , T do # at each time

Propagate the ensemble: for j = 1, . . . , N

xj
t|t−1 ∼ ft(xt|x

j
t−1|t−1)

Update the ensemble: repeat the following steps until conver-

gence # Gibbs sampler

for j = 1, . . . , N do

a) Compute the EnKF update:

xj
t|t = xj

t|t−1+K̂t(θ
j
t )

[
yt + εjt −Htx

j
t|t−1 − γj

tCt ◦ θ
j
t

]

with εjt ∼ N
(
0,Rt(θ

j
t )
)

b) Sample θit,l|y1:t,x
j
t|t, γ

i
t ∼ GIG(λ − 1

2 ,χ +
(yt,l−[Htxt]l)

2

σ2
t

,ψ +
(γi

tCt,l)
2

σ2
t

) for l = 1, . . . , ny

c) Sample γi
t |y1:t,x

j
t|t,θ

i
t ∼ N

(
µ̃j
γ , (σ̃

j
γ)

2
)

with

µ̃j
γ = µγ + Γj

t(yt −Htx
j
t|t − µγCt ◦ θj

t ) (σ̃
j
γ)

2 = (1 −

Γj
tCt ◦ θ

j
t )σ

2
γ and

Γj
t = σ2

γ(Ct◦θ
j
t )

T
[
σ2
γ(Ct ◦ θ

j
t )(Ct ◦ θ

j
t )

T +R(θj
t )
]−1

end for

end for

4. NUMERICAL SIMULATIONS

In this section, we empirically study the performances of
the proposed GH-GEnKF in a challenging high-dimensional
problem where observations are corrupted by heavy-tailed
(and possibly skewed) noise. In particular, the latent process

: binary variables which could reflect the quality of 
the sensors   (50% of the values: 1 at random 
observation locations)


