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Introduction

Motivation: To improve robustness and efficiency for estimating the
state and time-varying parameters in nonlinear high-dimensional
systems.

Difficulty: Typical state augmentation technique tend to fail to detect
parameter changes unless there are strong enough correlations.

Solution: Introduce correlated perturbation and use an efficient particle
filter "IEWPF" [1] combined with adaptive moment estimation (Adam [2])
based optimization technique from machine learning.

Methods

State augmentation with correlated perturbation
Time evolution of state in augmented state-space model:
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can approximately express by using Taylor series expansion:
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Combination of IEWPF and parameter optimization

« The Implicit Equal-Weights Particle Filter (IEWPF) [1] can avoid filter
degeneracy by using a proposal density which the weight of each
particle can be equal to the target weight.

« Assume typical geophysical systems which time step interval 7 exist
between observations, and introduce new proposal distribution
during this period as shown in Fig. 1.
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Adam-based parameter correction term
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« Using gradient of log-likelihood at the last observation step, update
momentum /m and norm (squared gradient) v as following equation.
u and p denote hyper-parameter that control these moving average.
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« Then parameter correction term gis expressed as follows. 4, and &
denote step-size and a term to avoid division by 0, respectively.
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Mixture proposal density

Remaining problem has been the choice of the step-size factor. Especially
in proposed method combined with Adam-based correction term, step-
size plays a critical role in balancing a stable estimation with fast tracking
to the abrupt changes. Therefore, in order to improve both stability and
follow-up capability for uncertain environment, mixture proposal density is
introduced as follows.
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Case study : Lorenz-96 with parameterized forcing

Proposed method is tested with twin experiment using Lorenz-96 model
whose forcing is parameterized as follows:
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) is the state variables at position / of dimension N, and 7, &,

X U= N
0,is unknovvn or time-varying parameter. In the following
experiments, the true model error covariance matrix Q is chosen as
tridiagonal matrices, the main diagonal value is 0.20 and both sub-
and superdiagonal values are 0.05. The observation error matrix R is
diagonal with main diagonal value 0.01. For the assimilation, we choose

same matrix Q and R as when observation was generated.

Evaluation results of mixture method (N; = 40)

In order to investigate the ability of the proposed mixture method to
estimate time-varying parameters, a trajectory comparing results of
different step-sizes (a)(b) and mixture (c) is shown in Fig.2. Compared
to the small step-size (a), a reduction of about 20% of the time-
averaged RMSE is achieved with the proposed mixing method (c).
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Fig.2. Time-series results of 40-dimensional Lorenz-96 with 10
ensemble members. All variables are observed by every 4t step and
the observations are generated from the true parameter value [7, 8,
0,] = [8.0, 4.0, 40.0] changed 30% bigger at the 1000t step.

Conclusion

Proposed method has capability to track the change of the
model characteristics (e.g. parameters) by extremely fewer
ensemble even in case of high-dimensional application.
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