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Mixture proposal density

Remaining problem has been the choice of the step-size factor. Especially 

in proposed method combined with Adam-based correction term, step-

size plays a critical role in balancing a stable estimation with fast tracking 

to the abrupt changes. Therefore, in order to improve both stability and 

follow-up capability for uncertain environment, mixture proposal density is 

introduced as follows.

Case study : Lorenz-96 with parameterized forcing 

Proposed method is tested with twin experiment using Lorenz-96 model 
whose forcing is parameterized as follows:

xj (j=1,…,Nj) is the state variables at position j of dimension Nj and f0, q1, 

q2 is unknown or time-varying parameter.  In the following 

experiments, the true model error covariance matrix Q is chosen as 

tridiagonal matrices, the main diagonal value is 0.20 and both sub-

and superdiagonal values are 0.05. The observation error matrix R is 

diagonal with main diagonal value 0.01. For the assimilation, we choose 

same matrix Q and R as when observation was generated.

Evaluation results of mixture method (Nj = 40)

In order to investigate the ability of the proposed mixture method to 
estimate time-varying parameters, a trajectory comparing results of 
different step-sizes (a)(b) and mixture (c)  is shown in Fig.2. Compared 
to the small step-size (a), a reduction of about 20% of the time-
averaged RMSE is achieved with the proposed mixing method (c).

Conclusion
Proposed method has capability to track the change of the 

model characteristics (e.g. parameters) by extremely fewer 
ensemble even in case of high-dimensional application. 
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Introduction

Motivation: To improve robustness and efficiency for estimating the 
state and time-varying parameters in nonlinear high-dimensional 
systems.

Difficulty: Typical state augmentation technique tend to fail to detect 
parameter changes unless there are strong enough correlations.

Solution: Introduce correlated perturbation and use an efficient particle 
filter “IEWPF” [1] combined with adaptive moment estimation (Adam [2]) 
based optimization technique from machine learning. 

Methods
State augmentation with correlated perturbation
Time evolution of state in augmented state-space model:

can approximately express by using Taylor series expansion:

Hence,

Combination of IEWPF and parameter optimization

• The Implicit Equal-Weights Particle Filter (IEWPF) [1] can avoid filter 
degeneracy by using a proposal density which the weight of each 
particle can be equal to the target weight. 

• Assume typical geophysical systems which time step interval T exist 
between observations, and introduce new proposal distribution 
during this period as shown in Fig. 1.

Adam-based parameter correction term

• Using gradient of log-likelihood at the last observation step, update 

momentum m and norm (squared gradient) v as following equation.   

m and r denote hyper-parameter that control these moving average.

• Then parameter correction term g is expressed as follows. l0 and d

denote step-size and a term to avoid division by 0, respectively.
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Fig.2. Time-series results of 40-dimensional Lorenz-96 with 10 
ensemble members. All variables are observed by every 4th step and 
the observations are generated from the true parameter value [f0, q1, 
q2 ] = [8.0, 4.0, 40.0] changed 30% bigger at the 1000th step.

Fig.1. Parameter updating 
diagram from one step before 
observed step k to next 
observation k+T. Function g
denotes parameter correction 
term calculated by using the 
last observation and  is the 
number of time steps after the 
observation.
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(a) Small step-size
Stability: Good
Follow-up: Bad

(b) Large step-size
Stability: Bad

Follow-up: Good

(c) Mixture
Stability: Good

Follow-up: Good
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