Trace methods for hermitian *K*-theory 齋藤 翔 統計的機械学習研究センター 特任助教

1. Introduction.

Algebraic *K*-theory is an invariant of rings and schemes deeply related to arithmetic and algebraic geometry, but extremely difficult to compute. Still, calculations based on the approximation of algebraic *K*-theory by cyclic homology, or on the trace methods, proved fruitful in investigating the local nature of the invariant. In this note I explain my current work in progress to develop a similar methodology for calculating hermitian *K*-theory, a variant of algebraic *K*-theory defined for objects equipped with duality.

2. Background: Trace methods for algebraic *K*-theory

Denote by ∞ Catst the (large) ∞ -category of stable ∞ -categories and exact ∞ functors. The ∞ -category NMot of *noncommutative motives* ([BGT]), together with the ∞ -functor $z : \infty$ Catst \rightarrow NMot, is universal among ∞ -functors $s : \infty$ Catst \rightarrow \mathcal{M} satisfying certain conditions, one of which requires that, roughly, if $C \rightarrow \mathcal{D} \rightarrow$ \mathcal{E} is a cofibre sequence of stable ∞ -categories then $s(C) \rightarrow s(\mathcal{D}) \rightarrow s(\mathcal{E})$ is a cofibre sequence in \mathcal{M} . By definition, the (nonconnective) *algebraic K-theory* $\mathbf{K}(C)$ of an ∞ -category C is the mapping spectrum map_{NMot}(z(Perf_S), z(C)), where \mathbf{S} denotes the sphere spectrum and for a ring spectrum R, Perf_R denotes the stable ∞ -category of compact objects in the stable ∞ -category of R-module spectra. The [Conjecture. The nonconnective hermitian *K*-theory spectrum in my sense agrees with Schlichting's Karoubi-Grothendieck-Witt spectrum [S].] [Example. Let $C = \operatorname{Perf}_R$ and $(-)^V$ be the contravariant autoequivalence thereon that associates the Hom-complex $\operatorname{Hom}_R(E, R[0])$ to a perfect complex *E*, where *R*[0] denotes the complex whose 0-th term is *R* and whose other terms are trivial. Then the 0-th hermitian *K*-group $K^h_0(R) = \pi_0 K^h(\operatorname{Perf}_R; (-)^V)$ is the free abelian group generated by the set of perfect complexes *E* equipped with a quasi-isomorphism with its dual $\operatorname{Hom}_R(E, R[0])$, modulo the relation that identifies the second term of a distinguished triangle $E' \to E \to E'' \to E'[1]$ with the sum of the first and third terms if the sequence is compatible with the duality quasi-isomorphisms on the respective terms.]

The aim of my work in progress is to establish the trace methods for calculating hermitian *K*-theory. To this end, first recall the following recent result by Nikolaus and Scholze.

[**Theorem** (Nikolaus-Scholze [NS]). The topological cyclic homology spectrum TC(C) of a stable ∞ -category C is given by the mapping spectrum map_{CycSp}(THH(Perf_S), THH(C)), where CycSp is the stable ∞ -category of *cyclotomic spectra*, which are by definition S^1 -equivariant spectra equipped with a certain extra data called the *cyclotomic*

homotopy groups $\mathbf{K}_{\mathbf{n}}(C) = \pi_{\mathbf{n}}(\mathbf{K}(C))$ are the *algebraic K-groups*.

[Example. Let $C = \operatorname{Perf}_R$, the stable ∞ -category of complexes of modules over a discrete ring R, quasi-isomorphic to a bounded complex of finitely generated projective modules. Then the 0-th K-group $\mathbf{K}_0(\operatorname{Perf}_R)$ is the free abelian group generated by the set of quasi-isomorphism classes of such complexes modulo the relation that identifies the class [E] with the sum of the classes [E'] and [E''] if there is a distinguished triangle $E' \to E \to E'' \to E'[1]$.]

In general, the higher algebraic *K*-groups $\mathbf{K}_{\mathbf{n}}(\operatorname{Perf}_{R})$ are extremely difficult to compute. But it is known that *K*-theory can be approximated by cyclic homology: For a ring *R*, there is a canonical *S*¹-equivariant map $\mathbf{K}(R) := \mathbf{K}(\operatorname{Perf}_{R}) \to \operatorname{HH}(R)$, where the circle group *S*¹ acts trivially on the domain and the target denotes the Hochschild homology spectrum of *R* considered with the canonical action by *S*¹. The induced map tr : $\mathbf{K}(R) \to \operatorname{HC}^{-}(R)$ is called the *trace map*, where HC⁻(*R*) denotes the homotopy fixed point spectrum of HH(*R*) under the *S*¹-action, called the *negative cyclic homology spectrum*.

[**Theorem** (Goodwillie [G]). Let *R* be a discrete ring and *I* a nilpotent ideal thereof. Write $\mathbf{K}(R, I)_{\mathbf{Q}}$ and $\mathrm{HC}^{-}(R_{\mathbf{Q}}, I)$ for the homotopy fibres of the maps $\mathbf{K}(R)_{\mathbf{Q}}$ $\rightarrow \mathbf{K}(R/I)_{\mathbf{Q}}$ and $\mathrm{HC}^{-}(R_{\mathbf{Q}}) \rightarrow \mathrm{HC}^{-}((R/I)_{\mathbf{Q}})$, respectively, where $(-)_{\mathbf{Q}}$ denotes rationalization. Then the trace map induces a homotopy equivalence from $\mathbf{K}(R, I)_{\mathbf{Q}}$ to $\mathrm{HC}^{-}(R_{\mathbf{Q}}, I)$.]

To remove the rationalization from the statement, one needs to replace the cyclic homological invariants by more sophisticated variants, i.e. HH(*R*) by the *topological Hochschild homology spectrum* THH(*R*) and HC⁻(*R*) by the *topological cyclic homology spectrum* TC(*R*). The topological Hochschild homology spectrum admits a canonical action by S^1 , and the topological cyclic homology spectrum. There is a canonical S^1 -equivariant map $\mathbf{K}(R) \to \text{THH}(R)$, and the induced map tr : $\mathbf{K}(R) \to \text{TC}(R)$ is called the *cyclotomic trace map*.

structures.]

Note that if X is an S^1 -equivariant spectrum then the automorphism of the *commutative* compact Lie group S^1 that maps z to z^{-1} gives rise to another S^1 -action on X. This operation defines an autoequivalence $(-)^{\text{op}}$ on the stable ∞ -category of S^1 -equivariant spectra and similarly on CycSp. Write D-CycSp for the stable ∞ -category of cyclotomic spectra X equipped with an equivalence with X^{op} .

[Definition. Let *C* be a stable ∞ -category with duality (-)^V, i.e. an equivalence with C^{op} . Then the mapping spectrum $\text{map}_{D-CycSp}(\text{THH}(\text{Perf}_S), \text{THH}(C))$, where THH(Perf_S) is equipped with an equivalence with THH(Perf_S)^{op} induced by the duality that takes a finite spectrum *X* to the mapping spectrum map(*X*, **S**) and THH(*C*) equipped with the equivalence with THH(*C*)^{op} induced by (-)^V, is denoted by TD(*C*; (-)^V) and called the *topological dihedral homology*.]

Note that the ∞ -functor THH : ∞ Catst \rightarrow CycSp is compatible with the autoequivalences on the domain and target, both denoted by (-)^{op}.

[**Proposition**. For a stable ∞ -category *C* with duality $(-)^V$, write D-*C* for the stable ∞ -category of objects *E* of *C* equipped with an equivalence φ with E^V . Then the mapping spectrum $\operatorname{map}_{D-C}((E, \varphi), (E', \varphi'))$ is equivalent to the homotopy fixed point spectrum of $\operatorname{map}_C(E, E')$ with respect to the **Z**/2-action given by the conjugation by φ and φ' . In particular, the cyclotomic trace map tr : $\mathbf{K}(C) \to \operatorname{TC}(C)$ induces the *dihedro-cyclotomic trace map* tr^{*h*} : $K^h(C; (-)^V) \to \operatorname{TD}(C; (-)^V)$.]

I am currently working to show the following hermitian analogue of the Dundas-Goodwillie-McCarthy theorem:

[Goal. Let *R* be a ring with anti-involution $w : R \to R^{op}$ and *I* a nilpotent

[**Theorem** (Dundas-Goodwillie-McCarthy [DGM]). For a ring *R* and a nilpotent ideal *I* thereof, the cyclotomic trace map induces a homotopy equivalence from $\mathbf{K}(R, I)$ to $\mathrm{TC}(R, I)$, where F(R, I) denotes the homotopy fibre of the map $F(R) \rightarrow F(R/I)$ for $F = \mathbf{K}$ or TC.]

3. Trace methods for hermitian *K*-theory.

Let *C* be a stable ∞ -category equipped with a duality (-)^V, i.e. an equivalence between *C*^{op} and *C*. I define the *nonconnective hermitian K-theory K^h*(*C*; (-)^V) to be the homotopy fixed point spectrum of the nonconnective algebraic *K*-theory **K**(*C*) with respect to the **Z**/2-action induced by (-)^V. ideal preserved by *w*. Then the dihedro-cyclotomic trace map should induce an equivalence from $K^h(R, I; w)$ to TD(R, I; w).]

References.

[BGT] A. Blumberg, D. Gepner and G. Tabuada, *A universal characterization of higher algebraic K-theory*, Geom. Topol., 17, 733-838, 2013.

[DGM] B. Dundas, T. Goodwillie and R. McCarthy, *The local structure of algebraic K-theory*, Springer, 2013.

[G] T. Goodwillid, *Relative algebraic K-theory and cyclic homology*, Ann. Math. (2), 124, no. 2, 347-402, 1986.

[NS] T. Nikolaus and P. Scholze, *On topological cyclic homology*, Acta. Math., 221, 203-409, 2018.

[S] M. Schlichting, *Hermitian K-theory, derived equivalences and Karoubi's fundamental theorem*, arXiv:1209.0848v3.

The Institute of Statistical Mathematics