2020年10月27日 統計数理研究所 オープンハウス Error bounds and convex feasibility problems

Bruno F. Lourenço Department of Statistical Inference and Mathematics Associate Professor

Goal of this project and further information

The goal is to provide a general framework for error bounds and analyze the convergence of several algorithms for convex feasibility problems. This is a joint work with Tianxiang Liu (RIKEN-AIP). For more details, please check our arXiv preprint [3].

1 What is a convex feasibility problem?

 $C_1, \ldots, C_m \subseteq \mathbb{R}^n$: closed convex sets.

find
$$x \in \mathbf{C} := \bigcap_{i=1}^{m} \mathbf{C}_{i},$$
 (CFP)

Some applications include: finding a feasible solution of an LP/SOCP/SDP; refining solutions of convex optimization problems obtained by iterative solvers; and several problems in image processing [1, 2].

2 Algorithms for CFPs

Some results:

- $C \neq \emptyset \Rightarrow \exists \Phi \text{ a CEBF for } C_1, \ldots, C_m$
- Lipschitzian, Hölderian error bounds and error bounds for **amenable cones** (see [4]) can be expressed as **CEBFs**.
- C_1, \ldots, C_m satisfy an uniform Hölderian error bound with exponent $\gamma \Leftrightarrow \exists \Phi \text{ a CEBF}$ for C_1, \ldots, C_m such that $\Phi(a, b) \coloneqq \rho(b)a^{\gamma}$, where ρ is monotone nondecreasing.
- C_1, \ldots, C_m satisfy a Lipschitzian error bound $\Leftrightarrow \exists \Phi \text{ a CEBF}$ for C_1, \ldots, C_m such that $\Phi(a, b) \coloneqq \rho(b)a$, where ρ is monotone nondecreasing.

4 Main convergence results

Let Φ be a strict **CEBF** (i.e., $\Phi(\cdot, b)$ is monotone increasing). For $\kappa > 0$ and $\delta > 0$ define

$$\phi_{\kappa,\Phi}(t) \coloneqq \left(\Phi(\sqrt{t}, \kappa)\right)^2, \quad t \ge 0.$$

$$\begin{split} P_{C_i}: & \text{orthogonal projection onto } C_i. \\ \text{dist} & (x, C_i): \text{ Euclidean distance from } x \text{ to } C_i. \\ & \text{Suppose } C \neq \emptyset \text{ and let } x^0 \text{ be an initial point.} \\ (a) & Mean \text{ projection algorithm (MPA): } x^{k+1} = \sum_{i=1}^m \frac{1}{m} P_{C_i}(x^k). \\ (b) & Cyclic \text{ projection algorithm (CPA): } x^{k+1} = P_{C_{t(k)}}(x^k), \\ & \text{where } t(k) := (k \mod m) + 1. \end{split}$$

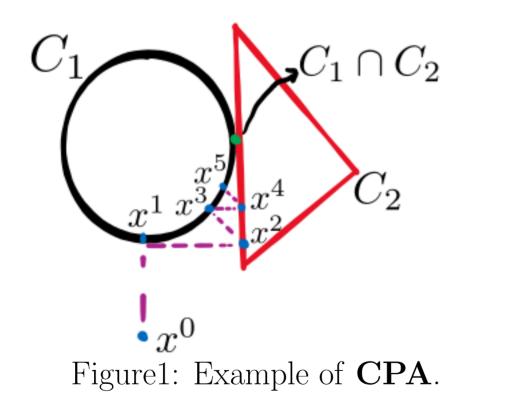
(c) Adaptive weighted projection algorithm (AWPA):

$$x^{k+1} = \sum_{i=1}^{m} \frac{d_i^k}{d_1^k + \dots + d_m^k} P_{C_i}(x^k),$$

where $d_i^k := \operatorname{dist}(x^k, C_i)$.

(d) Damped versions of the Douglas-Rachford algorithm (**dampDR**). See also [1] and [3, Section 4.3].

- Do these methods always work? Yes, because of convexity
- How fast do they converge? Depends on the kind of error bound that holds between sets



$$\Phi_{\kappa}^{\spadesuit}(t) \coloneqq \int_{\delta} \frac{1}{\phi_{\kappa,\Phi}^{-}(s)} ds, \quad t \in (0, \sup \phi_{\kappa,\Phi})$$

where f^- denotes a generalized inverse of f. A few results:

1. The convergence rate of MPA, CPA, AWPA, dampDR and several other methods can be expressed in terms of Φ_{κ}^{\bigstar} and its inverse. E.g., rate for CPA:

$$\operatorname{dist}\left(x^{k},\,C\right) \leq \sqrt{(\Phi_{\widehat{\kappa}}^{\bigstar})^{-1} \Big(\Phi_{\widehat{\kappa}}^{\bigstar}(\operatorname{dist}^{2}(x^{0},\,C)) - (k - m - (k \,\operatorname{mod}\,m))/m^{2}\Big)} \,\,\forall\,\,k \geq 2m.$$

2. Suppose C_1, \ldots, C_m satisfy an uniform Hölderian error bound with exponent γ and let $\{x^k\}$ be generated by **MPA**, **CPA**, **AWPA** or **dampDR**. Then, there exists M > 0 such that

dist
$$(x^k, C) \leq \begin{cases} M k^{-\frac{1}{2(\gamma^{-1}-1)}} & \text{if } \gamma \in (0, 1), \text{ (Sublinear convergence)} \\ M \theta^k & \text{if } \gamma = 1. \end{cases}$$
 (Linear convergence)

3. When applied to conic feasibility problems over amenable cones (see [4]), convergence rates taking into the account the "level of regularity" of the problem can be obtained. For example, let \mathcal{K} be a symmetric cone and \mathcal{V} be an affine space with $\mathcal{K} \cap \mathcal{V} \neq \emptyset$. Let $\{x^k\}$ be generated by MPA, CPA, AWPA or dampDR, then there exists M > 0 such that

dist
$$(x^k, \mathcal{K} \cap \mathcal{V}) \leq \begin{cases} M k^{-\frac{1}{2(2^{d_{\mathcal{S}}(\mathcal{K}, \mathcal{V})} - 1)}} & \text{if a constraint qualification is not satisfied} \\ M \theta^k & \text{otherwise,} \end{cases}$$

where $d_{\rm S}(\mathcal{K}, \mathcal{V})$ is the **singularity degree** of the problem.

3 A new framework for error bounds

Definition. $\Phi : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ is a consistent error bound function (CEBF) for C_1, \ldots, C_m if:

(i) the following error bound holds:

dist
$$(x, \mathbf{C}) \le \Phi\left(\max_{1\le i\le m} \operatorname{dist}(x, \mathbf{C}_i), \|x\|\right) \quad \forall \ x \in \mathbb{R}^n;$$

(ii) $\forall b \ge 0, \ \Phi(\cdot, b)$ is monotone nondecreasing, right-continuous at 0 and $\Phi(0, b) = 0;$

 $(iii) \forall a \ge 0, \Phi(a, \cdot)$ is monotone nondecreasing.

- H. H. Bauschke and J. M. Borwein. On projection algorithms for solving convex feasibility problems. *SIAM Review*, 38(3):367–426, 1996.
- [2] P. Combettes. The convex feasibility problem in image recovery. volume 95 of Advances in Imaging and Electron Physics, pages 155 – 270. Elsevier, 1996.
- [3] T. Liu and B. F. Lourenço. Convergence analysis under consistent error bounds. *ArXiv e-prints*, 2020. arXiv:2008.12968.
- [4] B. F. Lourenço. Amenable cones: error bounds without constraint qualifications. *ArXiv e-prints. To appear in* Mathematical Programming, December 2017. arXiv:1712.06221.

The Institute of Statistical Mathematics