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Goal of this project and further information
The goal is to provide a general framework for error bounds and analyze

the convergence of several algorithms for convex feasibility problems. This
is a joint work with Tianxiang Liu (RIKEN-AIP). For more details, please
check our arXiv preprint [3].

1 What is a convex feasibility problem?

C1, . . . , Cm ⊆ Rn: closed convex sets.

find x ∈ C :=

m∩
i=1

Ci, (CFP)

Some applications include: finding a feasible solution of an LP/SOCP/SDP;
refining solutions of convex optimization problems obtained by iterative
solvers; and several problems in image processing [1, 2].

2 Algorithms for CFPs

PCi
: orthogonal projection onto Ci.

dist (x,Ci): Euclidean distance from x to Ci.
Suppose C ̸= ∅ and let x0 be an initial point.

(a)Mean projection algorithm (MPA): xk+1 =
∑m

i=1
1
mPCi

(xk).

(b)Cyclic projection algorithm (CPA): xk+1 = PCt(k)
(xk),

where t(k) := (k mod m) + 1.

(c)Adaptive weighted projection algorithm (AWPA):

xk+1 =

m∑
i=1

dki
dk1 + · · · + dkm

PCi
(xk),

where dki := dist (xk, Ci).

(d) Damped versions of the Douglas-Rachford algorithm (dampDR).

See also [1] and [3, Section 4.3].

•Do these methods always work? Yes, because of convexity

•How fast do they converge? Depends on the kind of error
bound that holds between sets

Figure1: Example of CPA.

3 A new framework for error bounds

Definition.Φ : R+×R+ → R+ is a consistent error bound function
(CEBF) for C1, . . . , Cm if:

(i) the following error bound holds:

dist (x,C) ≤ Φ

(
max

1≤i≤m
dist (x,Ci), ∥x∥

)
∀ x ∈ Rn;

(ii) ∀b ≥ 0, Φ(·, b) is monotone nondecreasing, right-continuous at 0 and
Φ(0, b) = 0;

(iii) ∀a ≥ 0, Φ(a, ·) is monotone nondecreasing.

Some results:

•C ̸= ∅ ⇒ ∃Φ a CEBF for C1, . . . , Cm

• Lipschitzian, Hölderian error bounds and error bounds for amenable
cones (see [4]) can be expressed as CEBFs.

•C1, . . . , Cm satisfy an uniform Hölderian error bound with exponent γ
⇔ ∃Φ a CEBF for C1, . . . , Cm such that Φ(a, b) := ρ(b)aγ, where ρ is
monotone nondecreasing.

•C1, . . . , Cm satisfy a Lipschitzian error bound ⇔ ∃Φ a CEBF for
C1, . . . , Cm such that Φ(a, b) := ρ(b)a, where ρ is monotone nondecreas-
ing.

4 Main convergence results

Let Φ be a strict CEBF (i.e., Φ(·, b) is monotone increasing). For κ > 0
and δ > 0 define

ϕκ,Φ(t) :=
(
Φ(

√
t, κ)

)2
, t ≥ 0.

Φ♠
κ (t) :=

∫ t

δ

1

ϕ−κ,Φ(s)
ds, t ∈

(
0, supϕκ,Φ

)
,

where f− denotes a generalized inverse of f .
A few results:

1. The convergence rate of MPA, CPA, AWPA, dampDR and several

other methods can be expressed in terms of Φ♠
κ and its inverse. E.g., rate

for CPA:

dist (xk, C) ≤
√
(Φ♠

κ̂ )
−1
(
Φ♠
κ̂ (dist

2(x0, C))− (k −m− (k mod m))/m2
)
∀ k ≥ 2m.

2. Suppose C1, . . . , Cm satisfy an uniform Hölderian error bound with expo-
nent γ and let {xk} be generated byMPA, CPA,AWPA or dampDR.
Then, there exists M > 0 such that

dist (xk, C) ≤

M k
− 1

2(γ−1−1) if γ ∈ (0, 1), (Sublinear convergence)

M θk if γ = 1. (Linear convergence)

3. When applied to conic feasibility problems over amenable cones (see [4]),
convergence rates taking into the account the “level of regularity” of the
problem can be obtained. For example, let K be a symmetric cone and
V be an affine space with K ∩ V ̸= ∅. Let {xk} be generated by MPA,
CPA, AWPA or dampDR, then there exists M > 0 such that

dist (xk, K ∩ V) ≤

M k
− 1

2(2dS(K,V)−1)
if a constraint qualification is not satisfied,

M θk otherwise,

where dS(K, V) is the singularity degree of the problem.
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