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Localized basis functions for spherical vector field

Modeling of divergence-free vector field

o A divergence-free vector field can be represented by a stream
function W% as follows:

VY (r)=—e xV¥7.
o A curl-free vector field can be represented by a potential function
¥ as follows:
VY (r)y=-V¥Y.
o According to the Helmholtz theorem, an arbitrary vector field on a
sphere can be written as a sum of a divergence-free field and a

curl-free field. We can thus represent any vector field in the
following form:

Vir)=VY@)+V7(r)=—e xV¥¥ -VVP7.

= We expand the stream function ¥ “and the potential function ¥
by using localized basis functions l//df and wcf:

() =Y Wy (rr), P ()= wy ().
o Defining the following vector-valued basis functions:
v/ (r,r)y=—e xVy?(r,r), v/ (r,r)=-Vy?(rr),

an arbitrary spherical field can be represented using these basis
functions

V=Y w’(-e,xVy (r.r))+ D w’ (-Vy (r.1))

=> whv? (r,r)+ Y W (r,r).
l I

o We employ spherical Gaussian functions for obtaining a set of
basis functions

v’ (r,r)=y? (r,r)= exp{n(r];" —lﬂ = exp[n(cos@’—l)].

1

1 We then obtain

v (r,rl-)=(77n><r)e><p{n(r;" —lﬂ, v (r,':-)=eg,i(nsinA9)eXp{f7(réf —1ﬂ-

o Now we consider a divergence-free vector field (no source, no
sink) and expand the field by using the divergence-free basis
functions:

Vr)= Zwl.dfvdf (r,r,).

o When we use the expansion of our basis functions
V()= wy(r.r,),

the node points r; can be placed arbitrarily.

o We placed 2500 node points randomly and uniformly distributed
In the region above 40 degree in latitude, which approximates the
following Monte Carlo convolution:

V()= [ weyw(r.rdr = | ;”2 " w(rw(r,r") R sin 0d0dg.
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Application to ionospheric physics Design of covariance matrices

o Now we apply this method for estimating the ionospheric plasma o In order to ensure spatial smoothness, the covariance matrix Q, is

velocity distribution which can be assumed to be divergence-free. set as follows:
o We fit the model to the data of SuperDARN, which is a radar /CQ(”p”l) CQ(”p”n)\
network observing the ionospheric plasma velocity. Q= gé : : ,
o The gaps of the data coverage of SuperDARN are filled with the \CQ (r,r) - CQ (,,n,,,n))

irical model (Weimber 2001).
empirical model (Weimber ) where CQ(rl.,rj) is the following correlation function:

o We assume the weight w can be decomposed into the model- _ _
: . r-r.
based value ¢ and the residual g: C,(r.,r,) = p(r.,r,)exp K( Rzl _lj ,
w=_+f, i )
and the residual g is estimated with the Kalman filter. (sin 4, —sin40 )(sin /1]- —smn40 )
(1-sin40")’

where po(r,,r;) =
o We assume the temporal evolution of the weights g

(B, | B._)=N(ap,_,. Q). o The matrix R, is set as follows:
o The residual component can then be estimated with the following /5191191 Cr(g,8) - 5191191 Cy (gp&)\
Kalman filter algorithm: R, =0, ' | ' ,
Prediction:
re;mtlon_ op \5191191 Cr(g,8) - 5191191 Cr (glﬂgl)/
klk—1 — k—1|k—1°
P —g%P +Q where b, and g; denote the beam number and the range gate of
kle=1 k=11 ’ the i-th element of the observation y and
Filtering: i (g, —g.)2 ]
P =P + (Pk_lli—l +H, R H) ' HR (5, —H. ). Cr(gi-8;) =exp| —— 2 —|

P = Py +HRIH ) ‘ ]

Results >> See our paper for detail ( https://doi.org/10.1186/s40623-020-01168-4 ).
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