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My Achievement
Consideration of a new way to estimate Value-at-Risk (VaR) based on GARCH-EVT (Extreme Value Theory) method.
- Our approach (GARCH-UGH) is asymptotically unbiased and yields VaR reflecting volatility background (more realistic).
- GARCH-UGH performed better than the original GARCH-EVT when appropriate threshold is selected.

Background
Purpose: EVT to estimate extreme quantiles (VaR in finance).
- Assumption of normality does not hold for real data.
Threshold selection is difficult unsolved problem in EVT.
- How do we select the number of top observations for VaR estimation?

Problems of EVT for VaR estimation:

1. I.I.D. assumption

2. Not reflecting volatility

3. Bias due to threshold selection

Our approach
Previous approach: Two-step GARCH-EVT (McNeil and Frey (2000))
→ GARCH for filtering, EVT for tail estimation
→ Only overcome 1st and 2nd problems

Our solution for VaR estimation:

Propose NEW GARCH-EVT called GARCH-UGH.
→ Same GARCH filtering but update EVT (de Haan et al. (2016))
→ Overcome all 3 problems
What’s new? A compromise between unbiasedness and volatility.

GARCH-UGH
Consider (Xt, t ∈ Z) a strictly stationary financial time series.
Assume dynamics of X are Xt = µt + σtZt where Zt are I.I.D. innovations.
Aim: Estimate the 1-step ahead conditional VaR as follows:

xk = µt+1 + σt+1zk. (1)

GARCH step:

1. Fit AR(1)-GARCH(1,1) model to the return data,

2. Estimate 1-step ahead mean µt+1 and volatility σt+1 for (1),

3. Extract the residuals zt (should be I.I.D.) for UGH step.

UGH step (Closed-form solutions, Semiparametric):
Use top k order statistics which need to be an upper intermediate.
- i.e. k = kn with k →∞ and k/n→ 0 as n→∞.
For 1 < k(sample fraction) < n and α = 1, ..., 4,
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where ρ̂kρ is the one optimal ρ̂ selected following de Haan et al. (2016).
Substitute (6) into (1) resulting in VaR estimates, our aim.

Simulations
Simulation setting: Consider GARCH(1,1) model given by

Xt = εtσt, σ2
t = λ0 + λ1X

2
t−1 + λ2σ

2
t−1,

with λ0 = 8.26×10−7, λ1 = 0.052, λ2 = 0.941, εt follows standardized Student-t
with d.o.f. = 5.64 and simulated theoretical VaR, xk = 0.0592.
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Figure 1: Simulated RMSE
(

=

√√√√√√ 1
N

∑N
j=1

(
x̂
(j)
k
xk

−1

)2)
of VaR based on UGH only,

GARCH-UGH and GARCH-EVT at 99.9% level.
p = 0.001, N = 1000, n = 1000.

Real data application
- Collected n = 7796 daily Dow Jones Index from 1985 to 2010.
- Computed daily negative log-returns (financial time series).
- Applied VaR estimators (1) for 1-step ahead VaR at 99.9% level.
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Figure 2: 13 years of negative log-returns (black) beginning in April 1985 with
superimposed 99.9% VaR estimators with effective sample fraction k = 1000.

Length of Test (n) 3450
Threshold Selection (k) 250 500 750 1000 1250 1500 1750 2000
0.999 Quantile
Expected 3 3 3 3 3 3 3 3

UGH
6
(0.21)

9
(0.01)

13
(0.00)

12
(0.00)

13
(0.00)

16
(0.00)

21
(0.00)

24
(0.00)

GARCH-UGH
1
(0.12)

4
(0.77)

4
(0.77)

4
(0.77)

8
(0.04)

7
(0.09)

12
(0.00)

12
(0.00)

GARCH-EVT
1
(0.12)

1
(0.12)

1
(0.12)

1
(0.12)

1
(0.12)

1
(0.12)

1
(0.12)

1
(0.12)

Table 1: Backtesting based on Kupiec’s test for several sample fractions k. The
table reports number of violations (observations > VaR) and p-values.
Conclusion: Our new approach GARCH-UGH performed better than origi-
nal GARCH-EVT when approx top 5% to 15% of data are used.
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