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LDA: Review
@ The prior distribution {Dir(x}) of the topic-document
distributions {#) are shared among all documents
* gd ~ D]I[EI)
* When D =35
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Inference

» Bayesian inference with collapsed gibbs sampling and slice
sampling
@ Sample topic (z4,)
@ Sample changepoints (c,;}
e |dentify changepoints by comparing likelihood with and without
a changepoint.
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(2} plw, zle; =1) at document & (b} plw,z|c; = 0} at document d
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Simulation Results 3: Misspecity topic

The model works well even you misspecify the number or topics.
True parameter: K = 310
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{2} run with K = 40
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(b} run with K = 20
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Application: Splrling [S0L5)

Result: Changes in topics (cont.)

Gradually decrease, indicating that the US attutide toward the MNative
Americans getting “harsher”

Top 10 words
oliver, peace, cease, ensu,
yockonahoma, junction, nation,
square, sign, good
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Motivation

¢ Changepoint analysis: identify the changes or shifts in
preferences or behaviors of political actors

» For count data, binary data, continuous data
¢ Some changes can be identified throught text-data

» Party position from manifesto
» Relationships between countries from treaties

* Proposed model: Bayesian changepoint model for text data,
based on topic model

daicht@ism.ac.jp

FIGR

It rodwc tion

Motivation

The proposed model ...

¢ simultaneously estimates
» topics
» the location of changepoints
» the number of changepoints
* considers multiple latent traits in given documents

» shows which topics {characteristics) contribute to changes
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LDA: Review

Choose word-topic
distributions

> ¢, ~ Dir(8)
Choose document-topic
distributions
» 65 e Dire)
Assign topics to ¢-th word in
the document d
Choose word given topic 2,
» wd,f A% M'Ult:l(ffi'
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LDA (topic-document distribution)
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Proposed model: Basic idea Proposed model: Basic idea (cont.) Proposed model: Basic idea (cont.)
@ The document is ordered in sequence {d =1, 2,---, D) » Left: without a changepoint {LDA)
o Assume a Markov structure on the prior (Dir(e}) of the » Right: with a changepoint, devides into two segments _ y
topic-document distributions {#). The data generating process {specific to our model)
¢ Segments: the documents in the same regime DII(DE) K=1 K=1 ¢ [raw the probability of obtaining changepoints
@ o being shared among the documents in the same segments \ Dir{a{l)] Djr(u(:}) 7~ Betaly, v,).
\ / @ For each document d = 1,---, 1},
\ » draw an indicator of changepoint ¢; ~ Bern(m),
. Sl » if ¢y =1, select hyper-parameter oz ~ Gamma(n,, 13),
" AN K=2 / \ K=K K=12 / \ K=K » if c; =0, select hyper-parameter a; = a3,
@ @ @ @ @ » choose a topic-document distribution 6 ~ Dir(ec;).
84 dJ—‘l—I— tee d—dg— 82 dJ—ll—I— e d—‘—lﬁl— The rest is the same as LDA {word assignment part).
@ @ @ @ @ (2} Without a changepoint {LDA) (b} With a changepoint
e Y L. w -
Segment 1 Segment 2 671 /21 /o
Simulation studies: Settings Simulation Results 1 Simulation Results 2: Shorter document
¢ The number of topics (K): K = 10,30 —
@ The number of true breaks: 4 (I = 1000} and 1 {I} = 100) * Red Ilne..the true breaks The model works well even the document length is short.
¢ Bars: estimated by our model
¢ [he model clearly identifies changes T b
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Application: Splrling [Z013) Appliation: Spirling (2012 Application: Splrling [Z012)
Application: Spirling (2012) Result: Estimated Breaks Result: Changes in topics
¢ Red line: Changepoints estimated in the original paper ¢ Investigate each topic to acguire a deeper and nuanced
¢ Bars: Changepoints estimated by our model understanding of “harshness”
e Changes in the relationship between the Native Americans and @ Replicate the changepoints identified in the original paper ¢ Blue dashed line: Changepoints estimated by our model
the US government
o Employ treaties from 1784 to 1911 e
e Qriginal paper: estimate “harshness” in a single dimension space % -
@ Identify three changes =
@ The "harshness” against the Native Americans have gradually EDEU-
intensified % 026
ﬂL_ | = Ii.‘l\-::bl'.lar (£ i) (1] Itl‘zlar [E- i) [E il IH\:Iar [E ]
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ear
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Application: Spirling [201%) Application: Spiing (01%)
Result: Changes in topics (cont.) Result: Changes in topics (cont.) Next steps
Mixed of “harshness” and friendship, transitional period Include “Harsh” words against the Native Americans, gradually
increase
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