表データのセル秘匿処理の最適化

南 和宏 モデリング研究系 准教授

オンサイト利用の安全性審査

表データからの情報漏えい

表セルの1次秘匿

度数分布表

－最小度数ルール

集計表

－占有性ルール
－（n，k）－ルール
－p\％ルール
表セルの2次秘匿
－秘匿セル変数の可能範囲（秘匿インターバル）の幅 w の長さが しきい値 t（度数分布表では1O）以上であること

	\mathbf{P}_{1}	\mathbf{P}_{2}	\mathbf{P}_{3}	合計
M_{1}	$x_{l l}$	24	$x_{l 3}$	72
M_{2}	$x_{2 l}$	38	x_{23}	116
M_{3}	40	39	42	121
合計	98	101	110	309

1．最小値問題

$a_{23}=\min x_{23}$
拘束条件：$x_{11}+x_{13}=72-24$
$x_{11}+x_{13}=72-24$
$x_{21}+x_{23}=116-38$ $x_{21}+x_{23}=116-38$
$x_{11}+x_{21}=98-40$
$x_{13}+x_{23}=110-42$ $\left(x_{11}, x_{13}, x_{21}, x_{23}\right) \geq 0$

2．最大値問題
$a_{23}=\max x_{23}$
拘束条件．$x_{11}+x_{13}=72-24$ $x_{21}+x_{23}=116-38$ $x_{21}+x_{23}=116-38$
$x_{11}+x_{21}=98-40$ $x_{11}+x_{21}=98-40$
$x_{13}+x_{23}=110-42$ $\left(x_{11}, x_{13}, x_{21}, x_{23}\right) \geq 0$

秘喏インターバル $w=\max x_{23}-\min x_{23}=68-20=48>10$

秘匿セル数の最小化問題

－秘匿パターン $y_{i} \in\{0,1\} \quad i=1, \ldots, n$

- 目的関数：秘匿セル数 $\sum_{i=1}^{n} y_{i}$
- 拘束条件：秘匿パターンに対応するテーブルの安全性

Benders分割による効率化

- 主問題と部分問題に分割
- 主問題：秘匿パターンの最適化
- 部分問題：各秘匿セルの拘束条件のチェック
- 大部分の問題で効率的に実行
- アルゴリズムが終了した場合は，最適解を保証

－主問題

Minimize $\quad \sum_{i=1}^{n} y_{i}$

$$
\text { subject to: } \quad y_{p}=1 \quad \forall p \in \mathcal{P}
$$

$$
y_{i} \in\{0,1\} \quad i=1, \ldots, n
$$

$$
v^{j T} \geq \beta^{j} \quad j \in \Phi \quad y_{i} \text { に閏する拘束条件 }
$$

（最初は空集合）
－部分問題

今後の課題

- 多次元テーブルへの対抗
- 差分攻撃への対策として，複数テーブル の同時処理

