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For possibly high-dimensional time series data, a basic discriminant statistic has a

goodness, and this can be applied to a classification of companies.

Discriminant and cluster analysis of high-dimensional time series data have been an urgent need in more and more academic
fields. For possibly high-dimensional and stationary time series data, we show the consistency of classifier under suitable conditions.
Also, simulation studies show that that works even in the case of finite observations of training samples. Finally, we conduct the
cluster analysis for real financial data. We conclude that our method is suitable for the discriminant and cluster analysis of
high-dimensional dependent data.

1 Discriminant analysis

1.1 Setting

X = {X(t) = (X1(t), . . . , Xp(t))
′ ; t ∈ Z}

(p < ∞ or p → ∞) :possibly high dimensional
stationary process with

•mean µ & spectral density matrix f (λ).

• Categories :

π1 : µ = µ(1), f (λ) = f (1)(λ),

π2 : µ = µ(2), f (λ) = f (2)(λ).

Step 1 Independent training samples X(1) & X(2)

from π1 & π2 with size n1 & n2, respectively,
are available.

Step 2We obtain samples X with size n.

⇓

Classification problem : X ∈ π1 or π2 ?

1.2 Method and result

• To classify X by

Γ(X) =
(
X̄−X̄(1) + X̄(2)

2

)′
(X̄(2)−X̄(1)),

where

X̄ =
1

n

n∑
t=1

X(t), X̄(i) =
1

ni

ni∑
t=1

X(i)(t).

•Rule:
– Γ(X) < 0 → X into π1,

– Γ(X) ≥ 0 → X into π2.

• Purpose: consistent classifier is P (i|j) → 0
for (i, j) = (1, 2), (2, 1).

Assumption 1.There exists η ≥ 0 such that
c1p

η < ∥µ1 − µ2∥2 < c2p
η.

Assumption 2. (I) p is finite and n1, n →
∞ (η ≥ 0),

(II) p → ∞, and

(i) if η > 1, then, both n1 and n are
finite or infinite,

(ii) if η = 1, then, n1 → ∞ and n is
finite or infinite,

(iii) if 1/2 < η < 1, then, n1 → ∞
and n is finite or infinite, such that

p = o(n
1/(1−η)
1 ),

(iv) if η = 1/2, then, n1, n → ∞, such
that p = o(n21),

(v) if 0 ≤ η < 1/2, then,
n1, n → ∞, such that p =

o
(
(n

1/(1−η)
1 n2/(1−2η))/(n

1/(1−η)
1 +

n2/(1−2η))
)
.

Theorem 1. Under some appropriate as-
sumptions, Γ(X) is a consistent classifier.

1.3 Simulation

(a) P (1|2) for the statistics 1, 2, 3, 4, and 5

(a) P (2|1) for the statistics 1, 2, 3, 4, and 5

Figure 1: The misclassification rates in simula-
tions (a). The disturbance processes of πi, i =
1, 2 are AR and MA process, respectively.

(b) P (1|2) for the statistics 1, 2, 3, 4, and 5

(b) P (2|1) for the statistics 1, 2, 3, 4, and 5

Figure 2: The misclassification rates in simula-
tions (b). The disturbance processes of πi, i =
1, 2 are AR and ARMA process, respectively.

2 Cluster analysis of fi-

nancial data

•Data: 42 time series with 15 years in a com-
pany; Profit and Loss statement, Balance
Sheet, and Cash Flow from the first and sec-
ond section companies of Tokyo Stock Ex-
change.

•Disparity of the cluster analysis:

C(X1,X2) = (X1 −X2)
′(X1 −X2).

Figure 3: Cluster analysis of the first & second
sections.
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