カーネル法による共部分構造の教師なし学習

持橋大地 数理•推論研究系准教授 daichi＠ism．ac．jp

本研究は，横井祥氏（東北大学 D1）との共同研究です。

Problem：Granularity of Knowledg
What information should be included as a knowledge？
cold front passes yesterday \rightarrow It began to rain heavilyin
It began to rain heavily y $\xlongequal{\text { E }}$ East Japan．
Sim had a dinner with his close friend \rightarrow
He had a happy time yesterday．

－World knowledge is essential for everyday computing
（e．g．robotics，nursery）
－Crucial also for artificial intelligence in general
－Causal inference
－Causal inference
－Market basket analysis
－Medicine，Pharmacy，\ldots ．
$\underset{\text { men，} 30 \text { years old，night }}{\rightarrow \text { beer，magazine，peanuts }}$

From a Bayesian point of view

Each word $w_{i} \in \mathrm{x}$ has latent binary variable z_{i} of inclusion（1）or exclusion（0）from knowledge：	
$\qquad p(\mathcal{D})$	$=\sum_{Z} p(\mathcal{D}, Z)$
	$=\sum_{Z} \underbrace{p(\mathcal{D} \mid Z)}_{\text {HSIC }} p(Z)$

We define a Gibbs distribution： | $p(\mathcal{D} \mid Z) \propto \exp (\beta \cdot \operatorname{HSIC}(S \mid \mathcal{D}))$ |
| :--- |

where $\beta \in \mathbb{R}$ is an inverse temparature．

Method
1．Learn associative substructures S from the training sentence
pairs．
2．Based on these substructures，see if it correctly discriminates
2．associative sentence pair（test data）：
$\frac{1}{\left|T_{P}\right|} \frac{1}{\left|T_{N}\right|} \sum_{\langle x, y\rangle \in T_{P}} \sum_{\left\langle\mathbf{x}^{\prime}, y^{\prime}\right\rangle \in T_{N}} \mathbb{I}\left[f(\mathbf{x}, \mathbf{y})>f\left(\mathbf{x}^{\prime}, \mathbf{y}\right)\right] \quad$（20） where T_{P} is aset of positive pairs（ $=$ test data），and T_{N} is a set of
negative pairs（＝randomly created from training data）． negative pairs（＝randomly created from training data）
$f(\mathbf{x}, \mathbf{y})$ is a measure for association（next）．

MCMC Inference algorithm
Until（convergence）\｛
For randomly visit $n \in$
－Draw a new candidate $S^{\prime} \sim q\left(S^{\prime} \mid S\right)$
acept S^{\prime} with probability $\min (1, r)$ where
$r=\frac{p\left(S^{\prime} \mid \mathcal{D}\right)}{p(S \mid \mathcal{D})} \cdot \frac{q\left(S \mid S^{\prime}\right)}{q\left(S^{\prime} \mid S\right)}$
$=\exp \left(\beta\left(\operatorname{HSIC}\left(S^{\prime} \mid \mathcal{D}\right)-\operatorname{HSIC}(S \mid \mathcal{D})\right)\right) \cdot \frac{q\left(\mathbf{x}_{n} \mid \mathbf{x}_{n}^{\prime}\right)}{q\left(\mathbf{x}_{n}^{\prime} \mid \mathbf{x}_{n}\right)}$

Synthetic data（3） After inference：y

Measure of association
For sentences x and y ，we measure association between them as Baseline Pairwise Mutual Information（Chambers\＆Jurafsky 2008）： $f(\mathbf{x}, \mathbf{y})=\log \frac{N \cdot c(\mathbf{x}, \mathbf{y})}{c(\mathbf{x}) c(\mathbf{y})}$
（21） where $c(\mathbf{x}, \mathbf{y})$ and $c(\mathbf{x})$ is a simple frequency．
Kernelized PMI Kernel estimate of PMI，whe
（23）

Our objective：HSIC
HSIC：Hilbert－SChmidt Independence Criterion（Gretton＋2005）
$\operatorname{HSIC}(S \mid \mathcal{D})=\frac{1}{N^{2}} \operatorname{tr}(\mathbf{K H L H})=\frac{1}{N^{2}} \operatorname{tr}(\overline{\mathbf{K}} \overline{\mathbf{L}}) \quad$（6）
－ $\mathbf{K}=\left(K_{i j}\right)$ ：Gram matrix on $\mathbf{x}^{\prime} \in S$
－ $\mathbf{L}=\left(L_{i j}\right):$ Gram matrix on $\mathbf{y}^{\prime} \in S$
－$H_{i j}=\delta(i, j)-\frac{1}{N}$
－$\overline{\mathrm{K}}=\mathrm{HKH}, \overline{\mathrm{L}}=\mathrm{HLH}$

－Given a parse tree of a sentence，
－Randomly select a word to expand／shrink a subtree from the
original tree
cture is connected．
－Re－compute gram matrix $\overline{\mathrm{K}}$ and $\overline{\mathrm{L}}$ for MH step
\Rightarrow Incremental re－computation of $\overline{\mathrm{K}}$ and $\overline{\mathrm{L}}$
\Rightarrow Incremental re－computation of $\overline{\mathrm{K}}$ and $\overline{\mathrm{L}}$
Rank－к incomplete Cholesky decomposition and its update
online

ROC curve
Precision／Recall curve：area under the curve（AUC）is a measure of
performance．
－Gigaword corpus
－Fairly Tale corpus（Jans＋2012）：small collection of stories for
children， 437 stories

Extracting Co－Substructures

Large HSIC coincide with that＂relative placements among X and
 －Note：this is a statistical＂pruning＂problem．

We want to extract meaningul part from each sentence automatically．

Experiments：Actual corpora（1） We extracted pairs of sentences that share co－referring argument （like＂sh＂，＂it＂）from Gigaword co
documents from New York Times
－Create dependency trees to be pruned
－Training： 10,000 pairs for Gigaword， 1,000 pairs for Fairly Tale －Testing： 500 pairs for Gigaword， 100 pairs for Fairly Tale Prediction task
discriminate correct sentence pair fro

Conclusion
Unsupervised learning of related substructures from paired data． Beneficial for natural language processing，causal inference， medical diagnosis or digital marketing．
－Oplizes HSI（Gretton＋2005）of extracted substructures －Combinatorial optimization：currently with MCMC

References：
＂Learning Co－Substructures by Kernel Dependence Maximization＂
Sho Sho Yoki，Daichi Mochihashi，Ryo Takahashi，Naoaki okazaki，
kentaro Inui．I JCA I 2017，to appear．

発表論文：

＂Learning Co－Substructures by Kernel Dependence Maximization＂．Sho Yokoi，Daichi Mochihashi，Ryo Takahashi，Naoaki Okazaki， Kentaro Inui．IJCAI 2017，to appear．

