A Reconsideration of Mathematical Statistics

江口 真透 数理 推論研究系

AbstractStandard mathematical Statistics is based on the assumption of random sample.
Under the assumption the mathematical statistics is formulated such as
mean, variance, exponential model, unbiasedness, sufficiency.
However, the assumption of random sample is away from practical problems.
Currently the framework of mathematical statistics is not useful for researchers,
which should be reformulated towards the current interests in statistics.
For this we need to change the definition of mean, variance, exponential model.

Sample mean, exponential model, maximum likelihood

Let $X_1,...,X_n$ be a random sample from f(x). Then the sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ is unbiased for $\mu = E_f(X)$. Assume that the density f belongs to an exponential model $M^{(e)} = \{f_\theta(x) := f_0(x) \exp\{\theta^T x - \kappa(\theta)\} : \theta \in \Theta\}$

Then \overline{X} is MLE for μ , and the minmum variance unbiased estimator for μ . Fisher (1912, 1922), Wilks (1938), Cramer (1945), Cox-Hinkley (1979),

Standard information geometry

m-geodesic $C_{f,g}^{(m)} = \{f_t^{(m)}(x) := (1-t)g(x) + tf(x) : t \in [0,1]\}$ e-geodesic $C_{f,g}^{(e)} = \{f_t^{(e)}(x) = e^{(1-t)\log g(x) + t\log f(x) - \kappa(t)} : t \in [0,1]\}$

KL divergence $D_0(f,g) = E_f(\log f - \log g)$ satisfies $C_{f,g}^{(m)} \perp_g C_{g,h}^{(e)} \Leftrightarrow D_0(f,h) = D_0(f,g) + D_0(g,h)$ (Amari-Nagaoka, 2001)

Selective sample, IPW estimate

We are not given a random sample $\{X_i\}_{1 \le i \le n}$ from $f_{\theta}(x)$ But we are given a selected sample $\{X_i^*\}_{1 \le i \le n}$ from

$$f_{\theta}(x, S = s) = P(S = s \mid x) f_{\theta}(x) = p(s) f_{\theta}(x) r(x, s) \text{ where } p(s) = 1/\int r(y, s) f_{\theta}(x) dx$$

Inverse probability weighted estimator $\hat{\mu} = \frac{\sum_{i=1}^{n} \frac{X_{i}}{r(X_{i}, S_{i})}}{\sum_{i=1}^{n} \frac{1}{r(X_{i}, S_{i})}}$ Consistency $\hat{\mu} \xrightarrow{\text{a.s.}} \frac{E_{f}(\frac{X}{r(X, S)})}{E_{f}(\frac{1}{r(X, S)})} = \mu$

Cf. Horovitz-Thompson (1952), Heckman (1979), Rubin (1976), Rosenbaum-Rubin (1983), Bang-Robins (2004)

Generalized Information geometry

Generalized m-geodesic
$$C_{f,g}^{(\phi^*)} = \{f_t^{(\phi^*)}(x) : t \in [0,1]\}$$
 s.t. $\frac{\frac{1}{\phi'(f_t^{(\phi^*)}(x))}}{\int \frac{1}{\phi'(f_t^{(\phi^*)})} dP} = (1-t)\frac{\frac{1}{\phi'(f(x))}}{\int \frac{1}{\phi'(f)} dP} + t\frac{\frac{1}{\phi'(g(x))}}{\int \frac{1}{\phi'(g)} dP}$

Generalized e-geodesic $C_{f,g}^{(\phi)} = \{ f_t^{(\phi)}(x) := \phi^{-1}((1-t)\phi(f(x)) + t\phi(g(x)) - \kappa^{(\phi)}(t)) : t \in [0,1] \}$

Generalized KL divergence
$$D_{\phi}(f,g) = \frac{\int \{\phi(f) - \phi(g)\} / \phi'(f) dP}{\int 1 / \phi'(f) dP}$$
 satisfies $C_{f,g}^{(\phi^{\phi})} \perp_{g} C_{g,h}^{(\phi)} \Leftrightarrow D_{\phi}(f,h) = D_{\phi}(f,g) + D_{\phi}(g,h)$

Generalized meanand variance
$$\mathbf{E}_{f}^{(\phi)}\{a(X)\} = \frac{\int \frac{a}{\phi'(f)} dP}{\int \frac{1}{\phi'(f)} dP} \quad \operatorname{Cov}_{f}^{(\phi)}\{a(X), b(X)\} = \frac{\int \frac{-\phi''(f)(a - \mathbf{E}^{(\phi)}a)(b - \mathbf{E}^{(\phi)}b)^{1}}{\{\phi'(f)\}^{2}} dP}{\int \frac{1}{\phi'(f)} dP}$$

Maximum ϕ - estimation

Let $\{X_i\}_{1 \le i \le n}$ be a selective sample from $f_{\theta}^*(x, S = s) = P(S = s \mid x) f_{\theta}(x) = p(s) f_{\theta}(x) r(x, s)$

$$\phi\text{-utility function } L^{(\phi)}(\theta) = -\sum_{i=1}^{n} \frac{\phi(1/n)}{\phi'(r(X_i, S_i))} \log f_{\theta}(X_i) \qquad \text{Maximum } \phi\text{-estimator} \qquad \hat{\theta}^{(\phi)} = \underset{\theta \in \Theta}{\arg \max} L^{(\phi)}(\theta)$$

If
$$\phi(t) = \frac{1}{2}t^2$$
, then $\hat{\mu}^{(\phi)} = \frac{\sum_{i=1}^n \frac{t(X_i)}{r(X_i, S_i)}}{\sum_{i=1}^n \frac{1}{r(X_i, S_i)}}$

(Max ϕ - estimator = Inverse probability weighted estimator)

The Institute of Statistical Mathematics