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| Abstract

A five-year-long cross-disciplinary project on studying whole brain neuronal
activity of Caenorhabditis elegans (C. elegans) has taken part since 2013.
The objective 1s to understand the underlying mechanisms of the complicated
neural dynamics through recent advancements of 4D calcium imaging
techniques. We tackle this great challenge with state-of-the-art machine
learning techniques, which facilitates improved throughput of image
processing. The machine learning pipeline begins with the detection and

segmentation of imaged cells, followed by tracking of the crowded objects
that exhibit great mobility in a time-lapse image sequence. For a given
tracked cell, fluorescence intensities of the segmented voxels define temporal
dynamics of its neural activities. Then, such information of all the brain cells
1s collectively analyzed to produce a network-based visualization, improving
our understanding of the information processing mechanism of the neural
system. This poster demonstrates the outline of the complete workflow.

(1) Tracking & (2) Segmentation

Gaussian Mixture Model + 3D Clump Splitting

After standard de-noising and watershed segmentation steps, a special
procedure is designed to separate overlapped neurons in the crowded area.
As a result, a highly reliable automatic segmentation scheme is achieved
that can 1dentify some neurons missed by human expert segmentation.

Ref: Toyoshima et al. (2016), PLOS Comp. Biol. [in print]

(3a) Atlas Generation

Registration with Motion Coherent Theory
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(4) Collective Data Analysis and Visualization

(3) Annotation

Atlas-based Weighted Majority Voting

Match neurons from target to atlas > Weight the matching results based on
confidence of accuracy = Combine results and find the best match
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(3b) Bipartite Matching

1. Coherent Point Drift Registration

Move point set by minimizing energy: Ref: Myronenko & Song (2010)
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2. Integer Linear Programming
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Phase Clustering for PCA

Hive Plot Visualization

Annotation-free Analysis
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Source: Y. Iwasaki, Ibaraki U. (College of Eng.)
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