

2

4

3.1 情報量統計学的データ可視化ツール使用例

テストデータ 条件付き確率関数・密度関数の可視化 ベイズ事後分布関数の可視化 情報量規準 AIC の利用 時系列データの場合

3.1.1 テスト用6次元データ [確率変数、 $x_1(nonGauss)$ と $x_2(yesno)$] $\mathbf{x}_{1} = \begin{cases} w_{1} & if \ x_{2} = 1 \\ -w_{1} & if \ x_{2} = 2 \end{cases}$ とする。ここで、 w_1 は確率密度関数 $f(w_1) = w_1 + \mu$ ($-\mu < w_1 < 1 - \mu$) を持つ連続値確率変数。ただし、 μ は、 w_1 の期待値が0となるように決められた定 数。当然のことながらw1と-w1の平均はともに0であり、分散も等しい。分散分析 によって、 $x_1 = w_1$ であるのか、 $x_1 = -w_1$ であるのか を弁別することはできない。x2 は等確率で値1あるいは2をとる2値確率変数とす る。この場合、x1とx2の間に関連があるが、その関連を相関解析で見だすことは できない。 [確率変数、 x_3 (cos) と x_4 (sin)] $x_3 = w_3 \cos w_2$ $x_4 = w_3 \sin w_2$ とする。ただし、 w_3 は期待値1、標準偏差 $\ll 1$ の正規分布、 w_2 は0 $\sim 2\pi$ の値 をとる一様乱数である。x3とx4の間に関連があるが、その関連を相関解析で見だ すことはできない。

3.1.4 情報量規準 AIC の利用

確率変数 $X \ge Y$ が関連していることをデータに基いて判断するには、モデル f_Y よ り $f_{Y|X}$ の方がデータへの当てはまりが良いことを確認すればよい。

情報量統計学的データ可視化ツールにいいては

AIC差 = (モデル $f_{Y|X} \mathcal{O} AIC$) – (モデル $f_Y \mathcal{O} AIC$) < 0

であればXとYが関連しているとする。

Yが離散変数の場合は、 f_Y を確率関数、連続変数の場合は、 f_Y を確率密度関数とする。

AIC差による判断の性能

この方法を、「テストデータ」に適用した結果は以下の通りである。 nonGauss と yesno, cos と sin, sin と regression、 yesno と depend の間に関連があるという結果であるが、これは正しい結果である。

目的変数乀説	変数乀説明変数		nonGauss yesno		COS			sin r		ession	depend
nonGauss		0.00	-0.19)	0.00			0.00		0.00	0.00
yesno		-1.18	0.00)	0.14			0.13		0.07	-0.06
cos		0.00	0.00)	0.00		-	2.16	-	-1.30	0.00
sin		0.00	0.00)	-2.16			0.00		-4.12	0.00
regression		0.00	0.00)	-1.4	-1.41		-3.92		0.00	0.00
depend		0.00	-0.06	i	0.13			0.07		0.11	0.00
	<u>目的変数∖説明変数</u> nonGauss(NG) yesno(YN) cos(CO) sin(SI) regression(RG) depend(DP)			NG * - - -	<u>YN</u> * _ #	CO - * *	<u>SI</u> * *	RG - * *	DP #		

