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【Abstract】  

Vere-Jones’ branching crack model was developed in 1970s. In this model, the earthquake 

source is regarded as the result from the total population of crack elements in a critical or 

near-critical branching process, where the crack propagates through a series of steps. At 

each step, each crack element simply terminates or generates several other crack elements 

nearby. Regarding the total number of steps (generations) as the duration time and the total 

number of crack elements as the total energy released, the following features of earthquake 

source processes can be simulated by this model: (a) the magnitude-frequency relation, (b) 

the source time function, and (c) the rupture duration-seismic moment relation.  

1. the Gutenberg-Richter magnitude-frequency relation holds as an asymptote for more 

general cases of  the GW branching processes. The distribution of energies is 

asymptotically a Pareto distribution (power law) for the critical case, or a tapered 

Pareto distribution (tapered power law, Kagan distribution) for the subcritical case.  

2. The variance of rupture durations is relatively larger for small magnitude events and 

gives a scaling relation of 𝑇 ∼ 𝑀1/2 between the rupture duration 𝑇 and the seismic  

moment 𝑀 of an earthquake.  

3. The number of crack elements at each generation (time step) show similar patterns 

of earthquake source time functions. Vere-Jones’ branching crack model explains 

why the EQ magnitude cannot be determined until the whole source process is 

completed.  

【On earthquake sources】 

Summary statistics:  Magnitude, Seismic moment, Energy, Moment tensor 

Models: Slip distribution (spatial or spatiotemporal), Fault geometry, Source time 

function, Stress drop distribution 

Complexity: Accompanying (sub) faults, Fault thickness 

 Interaction between the earthquake source and the surrounding environments:  

     The barrier model (Aki, 1984) and the asperity model (Lay and Kanamori, 1981). Both 

models refer to strong patches of the fault that are resistive to rupture or slip. In the 

barrier model, smoothly slipped patches are surround by relatively strong patches, and 

so earthquake is regarded as a stress-roughen process that can propagate leaving 

unbroken patches. In the asperity model, highly stressed strong patches are surrounded 

by the regions where stress has already been released by aseismic slips. 

【 Vere-Jones’ branching crack model – Galton-Watson process】 

• Each earthquake starts from an individual crack. 

• Each crack triggers further cracks independently in the same manner (probability 

distribution).        

       Y:  Number of cracks triggered by a crack 

      𝑝𝑖 = Pr 𝑖 cracks are triggered by a given crack , 𝑖 = 1, 2, …  

      𝐄 𝑌 = < 𝑌 > =  𝑖 𝑝𝑖
∞
𝑖=1 = 𝜇 

      𝐕𝐚𝐫 𝑌 = 𝐄𝑌2 − 𝐄𝑌 2 = 𝜎2 < ∞.     

• The energy (moment) of the earthquake can be emulated by the total number of cracks. 

• The rupture duration time can be emulated by the total number of generations. 

【 Seismic moments】 

 The moment 𝑀 of the earthquake can be emulated by the total number 𝑋 of cracks in 

Vere-Jones’ branching crack model.  

 (Dwass theorem) For a general branching process with a single time 0 ancestor and 

offspring distribution 𝑌 and total population size 𝑋: 

        Pr 𝑋 = 𝑘 =
1

𝑘
Pr 𝑌1 + 𝑌2 +⋯+ 𝑌𝑘 = 𝑘 − 1  

      where 𝑌1, 𝑌2, … , 𝑌𝑘 are independent copies of 𝑌. 

 Using the Dwass theorem and central limit theorem, we can prove 

        Pr 𝑋 = 𝑛 ∼
1
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      When   𝜇 <1,       Pr 𝑋 = 𝑛 ∼ 𝑛−
3

2  exp −
1−𝜇 2

2𝜎2
𝑛                (subcritical  regime) 

       When   𝜇 =1,       Pr 𝑋 = 𝑛 ∼ 𝑛−
3

2               (critical regime) 

 Asymptotes of the survival functions of magnitudes (𝑚) and  moments (𝑀) 

     𝑚 =
2

3
log10𝑀 − 2.9  

• When   𝜇 <1 (subcritical  regime),   

Pr magnitude ≥ 𝑚 ∼ const ⋅ 10−0.75𝑚−𝑐 10
−𝑑 𝑚

        

Pr moment ≥ 𝑀 ∼ const ⋅ 𝑀−0.5 exp(−𝑀/𝑀𝐶)   (tapered Pareto distribution) 

• When   𝜇 =1 (critical regime),    

Pr magnitude ≥ 𝑚 ∼ const ⋅ 10−0.75𝑚                      i. e., 𝑏 = 0.75   

Pr moment ≥ 𝑀 ∼ const ⋅ 𝑀−0.5      (Pareto distribution, G-R law) 

𝑀𝐶:  corner magnitude     𝑐, 𝑑: constants    

•  The critical case gives the Gutenberg-Richter magnitude-frequency relation, and the 

subcritical gives the tapered Partodistribution for earthquake sizes (Kagan, 1993).  

 Kagan (2010): Yes.  𝑏=0.75 is universal for earthquakes! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【Source-time functions】  

 The source time function represents the release rate of seismic moment as a function of 

time. 

 In Vere-Jones’ branching crack model,  it is assumed: Each generation is a time step, 

and energy at each time step is the number of cracks at this generation.  

 Some examples of source time functions. 

 

 

 

 

 

 

 Simulation examples of big earthquakes 

 

 

 

 

 

 

 

 

 

 Vere-Jones’ branching crack model has a similar source time function as an earthquake.  

If the branching process does not stop at a certain time step, any number of cracks 

could be produced in its continuation. This randomness explains why the EQ 

magnitude cannot be determined unless the recorded waveforms contain information of 

the whole source process.  

 This above conclusion is different from Olson (2005, 2006, Nature), which declared 

that the earthquake magnitude can be determined by the first several P wave phases. 

【The rupture duration-seismic moment relation 】 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The conventional 2D (circular or rectangle crack) model for earthquake rupture 

supposes that, once the rupture starts from a certain point on the fault plane, it 

propagates straightly to the boundary of the source area without a stop. With the 

assumptions that the rupture duration is related to the source dimension 𝐿 through the 

rupture velocity 𝑉𝑆 (which is assumed to be a constant and  proportional to the shear 

wave velocity 𝑇 ∝ 𝐿/𝑉𝑆 and that the stress drop is close to a constant for all the 

earthquakes, 𝑇 ∼ 𝑀1/3 can be obtained for the conventional 2D source model. 

 Simulations of Vere-Jones branching crack models show a relationship 𝑇 ∼ 𝑀1/2, 

which cannot be disproved by observations.  
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The 09/29/2009 Mw 8.0 Samoa 

Earthquake (USGS, 2009) 

 

The 02/06/2013 Mw 8.0  

-10.7377,165.1378 Earthquake (USGS) 

The 3/11/2011 Tohoku-

oki Earthquake  

(Lee et al, 2011) 

Plots of some typical source time functions. They are all different!  

(LEFT) Centroid times  (gray dots) and  half durations (red and green dots) of seismic events in the global CMT catalog. The centroid time is 

the time at which an earthquake has released half its energy. The rupture duration is generally estimated by using an empirically determined 

relationship such that the duration increases as the cube root of the seismic moment. TRIHD indicates a triangular moment-rate function, and 

BOXHD indicates a boxcar moment-rate function. The dashed and dot-dashed lines represent  slopes of 1/2 and 1/3, respectively.   

(RIGHT) Centroid times (black dots) and durations (red dots) of simulated earthquakes by 3 branching cracking models, the 0-2 model 

(𝑝0 = 1 − 𝑎, 𝑝2 = 𝑎, 𝑝1 = 𝑝3 = 𝑝5 = 𝑝6 = 𝑝7 = ⋯ = 0, with 𝑎 = 0.5 for the critical case and 𝑎 < 0.5 for the subcritical cases), the Poisson 

branching model (𝑝𝑖 = 𝜆
𝑖𝑒−𝜆/𝑖!, 𝑖 = 0,1,⋯ , with 𝜆 = 1 for the critical case and 𝜆 < 1 for the subcritical case), and the geometric branching 

model (𝑝𝑖 = 𝑎 1 − 𝑎
𝑖 , 𝑖 = 0,1,⋯, with 𝑎 = 0.5 for the critical case and 𝑎 > 0.5 for the subcritical case),  all approximately indicating  that 

the scaling law in the relation between the duration and the energy is 𝑇 ∼ 𝑀1/2. 


