2015年6月19日 統計数理研究所 オープンハウス

電波干渉計の新たなイメージング法について

池田 思朗 数理・推論研究系 准教授

共同研究者 田崎文得 (国立天文台), 秋山和徳 (国立天文台), 植村誠(広島大), 本間希樹 (国立天文台)

はじめに

電波干渉計は、天体からの電波を複数のアンテナで記録し掛け合わせ、 解析を行うことにより、高い分解能を持つ望遠鏡と同等の撮像を行う手 法である.電波干渉計の中でも、望遠鏡を地球規模に展開して配置する VLBI (Very Long Baseline Interferometer: 超長基線電波干渉計)は、現存 するあらゆる波長帯の望遠鏡の中で最も高い分解能を達成する.

VLBIを用いた観測で,興味深い観測対象のひとつがブラックホール である.ブラックホールは暗黒の天体であり,これまでの研究から多く の銀河の中心に超巨大ブラックホールが存在すると考えられている.こ れらの天体を撮像し"ブラックホールシャドウ"を検出できれば,天文学 における大きな貢献となる.

見かけの大きさが最大であると期待される銀河系中心のブラックホー ル候補天体の直接撮像を目指し,国際プロジェクトが日本も含めて進行 中である.順調に進めば2015~16年頃にはハワイを含む米国やヨーロッ パ,そしてチリのALMA望遠鏡も含んだ国際ネットワークが完成し,ブ ラックホールの観測が開始される.

ブラックホールシャドウのみかけの大きさは,現在のVLBIの解像度の限界程度であるあると考えられている.このため,スパースモデリングに基づくイメージング法が有効であると考えている.

図1は、ブラックホールシャドウのシミュレーション結果である.ここではリング状のブラックホールシャドウを考え、観測ノイズも考慮した問題を、通常の"zero padding"法とLASSOを使って解いて比較した.

クロージャー位相からの位相復元

前節では実部と虚部を別の成分として定式化したが visibility の各成分 V_j は一般に複素数である.ひとつの visibility の値は2つのアンテナの観 測を組み合わせて計算される.位相を $-\pi < \phi_i \leq \pi$ と定めると

$$V_j = |V_j| e^{\sqrt{-1}\phi_j},$$

それぞれの観測は (u, v)-平面上のある点 (u_j, v_j) の位相に対応する (図2 左). VLBIにおいて特にミリ波,サブミリ波といった短い波長の観測を 行うと,大気の擾乱や機材のもつゆらぎからこの位相を正確に計測する のは困難である. ϕ_j は雑音の影響で $\tilde{\phi}_j$ となるとしよう. 各点の位相に は雑音が乗るが,次のクロージャー位相 (Bispectrum とも呼ばれる) は雑 音の影響を受けないことが知られている [4].

LASSO を用いたイメージング法[1, 2]

電波干渉計では,画像を空間的に2次元フーリエ変換したものが観測される.理想的には波数領域の観測量(Visibility)を逆フーリエ変換すれば 天体画像(実像領域)が得られるはずだが,観測できる空間周波数領域の 点は電波望遠鏡を結ぶ基線が地球の公転と自転とともに描く軌跡にそっ て得られる点に限られる(図2左)ため,周波数領域のサンプリングは十 分ではない.

$$\boldsymbol{V} = F\boldsymbol{x} + \boldsymbol{n}, \ \boldsymbol{v} \in \Re^M, \quad F \in \Re^{M \times N}, \ \boldsymbol{x} \in \Re^N, \ \boldsymbol{V} \in \Re^M$$
(1)

ここで、xが画像であり、Fは既知のフーリエ行列、nはノイズである. 観測される Visibility Vはベクトルであり M < Nである.

画像の復元のため、Vに0の成分を加えてxと同じ次元とする"zero padding"が行われるが、復元画像が劣化する.ブラックホールのような 天体は実像領域で疎なイメージが期待されるので、xがスパースである と仮定すると問題を回避できる.すなわち、LASSO[3]の問題だと思って、 以下の解をイメージだと思うことにする.

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \left[\|\boldsymbol{V} - F\boldsymbol{x}\|_2^2 + \lambda \sum_{j=1}^N x_j \right], \quad x_j \ge 0, \quad j = 1, \cdots, N. \quad (2)$$

 $\psi_l = \phi_i + \phi_j - \phi_k = \phi_i + \phi_j - \phi_k,$

位相をベクトル $\phi = (\phi_1, \dots, \phi_N)^T$ クロージャー位相を $\psi = (\psi_1, \dots, \psi_L)^T$ とすると、次の制約式が得られる.

$$\boldsymbol{\psi} = A\boldsymbol{\phi},\tag{3}$$

ここで Aは $L \times N$ の行列で, 各行には3つの非零成分がある. 観測から 得られる独立なクロージャー位相の数 Lは位相の次元 Nよりも少ない ため, この式から直接位相を求めることはできない(L < N). 現在は(3) 式を満たすように試行錯誤的に位相を求めているが, この作業を自動化 できれば, 技術的な大きな進展となる.

観測している天体がランダムなパターンであれば,位相はランダム であるかもしれない.しかし,一般に天体は画面上でコンパクトである. そこで,位相は(*u*,*v*)-平面上である程度滑らかに変化することを期待し, 次のような関数を最適化することを考える.

$$C(\boldsymbol{\phi}) = \frac{1}{2} \sum_{j \neq k} d(\phi_j, \phi_k), \tag{4}$$

 $d(\phi_j, \phi_k)$ は2点の位相間の誤差関数である.こうした関数を最小化する 位相を用いてイメージングを行えるならば電波干渉計の撮像の手続きす べてが凸最適化によって自動的に実現できる.図2に提案する方法で位 相復元を行い、LASSOで画像を復元した例を示す.

図1: ブラックホールシャドウを想定した観測シミュレーションに よる画像構成の結果. 左: 想定したリング状のシャドウ画像. 中央: 通常のイメージング手法による解. 右: LASSOによる結果.

図2:クローンヤー位相からの画像構成ンミュレーンヨン. 左: *u-v* 平 面上の観測点の分布. 中央: 位相を既知としたときの結果. 右: ク ロージャー位相(891点)から位相(1446点)を復元したときの結果.

参考文献

Mareki Honma, Kazunori Akiyama, Makoto Uemura, and Shiro Ikeda. Super-resolution imaging with radio interferometry using sparse modeling. *Publ. Astron. Soc. Jpn*, Vol. 66, No. 5, p. 95, 2014. doi:10.1093/pasj/psu070.
池田思朗, 本間希樹, 植村誠. スパースモデリングと天文学. 応用数理, Vol. 25, No. 1, pp. 15–19, March 2015. 岩波書店.
Robert Tibshirani. Regression shrinkage and selection via the lasso. *J. R. Stat. Soc., Ser. B*, Vol. 58, No. 1, pp. 267–288, 1996.
R. Cornwell and P. N. Wilkinson. A new method for making maps with unstable radio interferometers. *MNRAS*, Vol. 196, pp. 1067–1086, 1981.

The Institute of Statistical Mathematics