逐次モンテカルロ法による南極氷床コアの年代推定

中野 慎也 モデリング研究系・データ同化研究開発センター 助教

Motivation

－Ice cores provide vital information on the climatic and environmental changes over the past hundreds of thousands of years．
－In order to make use of the chronological records from ice cores，it is crucial to obtain an accurate estimate of the relationship between age and depth in the ice cores

The age－depth relationship is mainly dependent on
\rightarrow the accumulation of snow at the site of the ice core，
\rightarrow and the thinning process due to the horizontal stretching and vertical compression of an ice layer．

The accumulation of snow and the thinning factor are also estimated simultaneously with the age as a function of depth．

Formulation for the age－depth relationship

We consider the following differential equation describing the age－depth relationship：

$$
d z=A(z) \Theta(z) d \xi
$$

z ：vertical coordinate for depth from the surface of the ice sheet，
ξ ：age in year（past is positive），
$A(z)$ ：the snow accumulation rate per year，
$\Theta(z)$ ：thinning factor due to the long－term deformation within the ice sheet．
The age can be obtained by the following integral：

$$
\xi(z)=\int_{S}^{z} \frac{d z^{\prime}}{A\left(z^{\prime}\right) \Theta\left(z^{\prime}\right)},
$$

where S indicates the surface of the ice sheet．Thus，this integral means that the age ξ is obtained by the integral from the surface．

Assuming a steady state，the thinning function $\Theta(z)$ is written using the vertical flow U $\Theta(z)=U(z) / U(0)$.
We rescale z and U as follows

$$
\zeta=\frac{H-z}{H}, u(\zeta)=-\frac{U(z)}{H},
$$

and write the rescaled flow u in the following form：
$u(\zeta)=u(0)+[u(1)-u(0)] \omega(z)=-\frac{1}{H}\left[m+\left(A_{0}-m\right) \omega(z)\right]$,
where A_{0} denotes the accumulation rate at the surface and m denotes the melting at the base of ice sheet．Then，Θ can be rewritten as：

$$
\Theta(\zeta)=\frac{\omega(\zeta)+\mu}{1+\mu}, \quad\left(\mu=m /\left[A_{0}-m\right]\right) .
$$

Accroding to Parrenin et al．（2007）＊，ω is assumed to be written in the following form：

$$
\omega(\zeta)=\zeta-\frac{1-s}{1+p}(1-\zeta)\left[1-(1-\zeta)^{1+p}\right]
$$

Sequential Bayesian model

Sequential model describing the vertical chain
The vertical profile of the age ξ is modeled using the following recurrence equations：

$$
\xi_{z+1}=\xi_{z}+\frac{1}{A_{z} \Theta_{z}}+v_{z}, \quad \log A_{z+1}=\log A_{z}+\eta_{z},
$$

where
ξ_{z} ：the age at z ；
Z ：the depth at the bottom end of the ice core；
A_{z} ：the accumulation rate in the interval from z to $z+1$ ；
Θ_{z} ：the thinning factor in the interval from z to $z+1$ ；
v_{z} ：variation of the age due to unknown processes；
$\eta_{\text {z }}$ ：the variation of the accumulation rate：
（Note that the transition of A_{z} is described using its logarithm in order to guarantee $A_{z}>0$ ．）
We combine ξ_{z} and A_{z} into one vector \boldsymbol{x}_{z} ．The relationship between \boldsymbol{x}_{z-1} and \boldsymbol{x}_{z} can thus be written as $p\left(\boldsymbol{x}_{z} \mid \boldsymbol{x}_{z-1}, \theta\right)$ according to the above equations．

Available data and relationship between model variables and data
In order to estimate ξ_{z} and A_{z} for each z ，we refer to two kinds of data
$\delta^{18} \mathrm{O}(\mathrm{z})$ ：a proxy of the temperature around the site，which is related with the accumulation rate，
Age markers：other reliable proxies at several depth levels（Kawamura et al．，2007）＊
We assume the following relationship between an age marker τ_{k} and the modeled age $\xi_{z_{k}}$

$$
\tau_{k}=\xi_{z_{k}}+\varepsilon_{k}
$$

and the following relationship is assumed between the accumulation rate A_{z} and $\delta^{18} \mathrm{O}(\mathrm{z})$

$$
\delta^{18} \mathrm{O}_{z}=\alpha \log A_{z}+\beta+w_{z} .
$$

We combine τ_{z} and $\delta^{18} \mathrm{O}_{z}$ into one vector \boldsymbol{y}_{z} and write the relationship between \boldsymbol{x}_{z} and \boldsymbol{y}_{z} as $p\left(\boldsymbol{y}_{z} \mid \boldsymbol{x}_{z}, \theta\right)$

Particle Markov chain Monte Carlo method

An estimate of the age as a function of depth can be obtained from the posterior distribution after θ are marginalised out：

$$
p\left(\boldsymbol{x}_{0: Z} \mid \boldsymbol{y}_{1: Z}\right)=\int p\left(\boldsymbol{x}_{0: Z} \mid \boldsymbol{y}_{1: Z}, \theta\right) p\left(\theta \mid \boldsymbol{y}_{1: Z}\right) d \theta
$$

Assuming that \boldsymbol{y}_{z} is conditionally independent of $\boldsymbol{x}_{z^{\prime}}$ given \boldsymbol{x}_{z}

$$
p\left(\boldsymbol{x}_{0: z} \mid \boldsymbol{y}_{1: z}, \theta\right) \propto p\left(\boldsymbol{y}_{z} \mid \boldsymbol{x}_{z}, \theta\right) p\left(\boldsymbol{x}_{z} \mid \boldsymbol{x}_{z-1}, \theta\right) p\left(\boldsymbol{x}_{0: z-1} \mid \boldsymbol{y}_{0: z-1}, \theta\right)
$$

We can obtain a set of samples from $p\left(\boldsymbol{x}_{0: z} \mid \boldsymbol{y}_{1: z}, \theta\right)$ given θ using a sequential Monte Carlo method．

The posterior distribution of θ given \boldsymbol{y}_{z} can be calculated using the following equation：

$$
p\left(\theta \mid \boldsymbol{y}_{1: Z}\right) \propto p\left(\boldsymbol{y}_{1: Z} \mid \theta\right) p(\theta)
$$

Samples from $p\left(\boldsymbol{y}_{1: Z} \mid \theta\right)$ can be obtained using the sequential Monte Carlo method．Therefore，samples from $p\left(\theta \mid \boldsymbol{y}_{1: Z}\right)$ can be drawn using the Metropolis method．

At each Metropolis iteration for generating a sample from $p\left(\theta \mid \boldsymbol{y}_{1: Z}\right)$ ， we can draw samples from $p\left(\boldsymbol{x}_{0: Z} \mid \boldsymbol{y}_{1: Z}, \theta\right)$ using the sequential Monte Carlo method．Collecting the samples for various θ ，we can obtain a set of samples obeying the marginal posterior $p\left(\boldsymbol{x}_{0: Z} \mid \boldsymbol{y}_{1: Z}\right)$ ．（Andrieu et al．，2010）＊．
＊Andrieu，C．，A．Doucet，and R．Holenstein（2010）：Particle Markov chain Monte Carlo methods，J．Roy．Statist．Soc．B，v．72，p． 269.

（The uncertainty was evaluated with the difference between the 10th and 90th percentiles of the posterior．）

