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J Ice cores provide vital information on the climatic and
environmental changes over the past hundreds of
thousands of years.

2 In order to make use of the chronological records from
ice cores, it is crucial to obtain an accurate estimate of
the relationship between age and depth in the ice cores.

The age-depth relationship is mainly dependent on

-=> the accumulation of snow at the site of the ice core, A

- and the thinning process due to the horizontal
stretching and vertical compression of an ice layer. <

4 i

The accumulation of snow and the thinning factor are also
estimated simultaneously with the age as a function of depth.
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_Formulation. for.the age-depth relationship

We consider the following differential equation describing the age-depth relationship:
= A(z)O(2)d&

z: vertical coordinate for depth from the surface of the ice sheet,

&: age 1n year (past 1s positive),

A(2): the snow accumulation rate per year,

®(z): thinning factor due to the long-term deformation within the ice sheet.

The age can be obtained by the following integral:

$(z)=

I S Az )®( )
where § indicates the surface of the ice sheet. Thus, this integral means that the age & is obtained
by the integral from the surface.

Assuming a steady state, the thinning function ®(z) is written using the vertical flow U:
O(z)=U(z)/U(0).
We rescale z and U as follows

_H- __U(Z)
g = T u(g) = I3

and write the rescaled flow u in the following fOI‘IIl’
u(¢) = u(0) +[u(l) —u(0)]o(z) = ——[m + (4, —m)a(z)],

where 4, denotes the accumulation rate at the surface and m denotes the melting at the base of

N

1ce sheet. Then, ® can be rewritten as:

(&) + U
OC¢)=—="-—", =m/[A,—m]).
©="0 0 (=il —m)
Accroding to Parrenin et al. (2007)*, @ 1s assumed to be written in the following form:

[1-a-¢0)+]

*Parrenin, F., et al. (2007): 1-D-ice flow modelling at EPICA Dome C and Dome Fuji, East Antarctica, Clim. Past, v. 3, p. 243.

_Sequential Bayesian model

Sequential model describing the vertical chain
The vertical profile of the age £ is modeled using the following recurrence equations:

1
.=+ 10 +v,, logA  =logd +n._,

z z

where
& :the age at z;
Z :the depth at the bottom end of the ice core;
A_ :the accumulation rate in the interval from z to z + 1;
®_ :the thinning factor in the interval from z to z + 1;
v_:variation of the age due to unknown processes;
m. :the variation of the accumulation rate:
(Note that the transition of 4_ is described using its logarithm in order to guarantee 4_> 0. )

We combine ¢, and A4_into one vector x_. The relationship between x_ and x_can thus be written as
p(x_| x_,, @) according to the above equations.

Available data and relationship between model variables and data

In order to estimate ¢ and A_for each z, we refer to two kinds of data:

5'80(z): a proxy of the temperature around the site, which is related with the
accumulation rate,

Age markers: other reliable proxies at several depth levels (Kawamura et al., 2007)*.

We assume the following relationship between an age marker t, and the modeled age &_:
T = é:zk &
and the following relationship is assumed between the accumulation rate 4_ and §'°O(z):
5%0,. =alog A +B+w..

We combine 7, and §'°0, into one vector y_and write the relationship between x_and y_as p(y_| x_, ).

*Kawamura, K., et al. (2007): Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years, Nature, v. 448, p. 912.
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_Larticle Markov.chain. Monte Carlo method

An estimate of the age as a function of depth can be obtained from the

posterior distribution after € are marginalised out:
pP(Xo; | V) = jp(xo:z | Y.z, p(0] y.,)dE.

Assuming that y_1s conditionally independent of x_, given x_,
p(xp. | y.,0) e p(p. [ x.,0) p(x_ | x,,,0) p(xy. | ¥y..1,0)

We can obtain a set of samples from p(x,. | y,..,0) given 6 using a
sequential Monte Carlo method.

The posterior distribution of 6 given y_can be calculated using the
following equation:

p@|y.,)x p(y.,|0)p0)

Samples from p(y,, | @) can be obtained using the sequential Monte
Carlo method. Therefore, samples from p(€| y,,) can be drawn using
the Metropolis method.

At each Metropolis iteration for generating a sample from p(@| y,.,),
we can draw samples from p(x,., | y,,,0) using the sequential Monte
Carlo method. Collecting the samples for various €, we can obtain a

set of samples obeying the marginal posteriorp(x,., | y,,)- (Andrieu et
al., 2010)*.

*Andrieu, C., A. Doucet, and R. Holenstein (2010): Particle Markov chain Monte Carlo methods, J. Roy. Statist. Soc. B, v. 72, p. 269.

_gResult

Blue dotted lines indicate the 10th and 90th percentiles
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Marginal posterior distributions for 9 parameters
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