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*Andrieu, C., A. Doucet, and R. Holenstein (2010): Particle Markov chain Monte Carlo methods, J. Roy. Statist. Soc. B, v. 72, p. 269. 

An estimate of the age as a function of depth can be obtained from the 
posterior distribution after     are marginalised out: 

Assuming that yz is conditionally independent of xz’ given xz ,

We can obtain a set of samples from                     given    using a 
sequential Monte Carlo method.  

The posterior distribution of     given yz can be calculated using the 
following equation: 

Samples from                 can be obtained using the sequential Monte 
Carlo method. Therefore, samples from                 can be drawn using 
the Metropolis method. 
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At each Metropolis iteration for generating a sample from               , 
we can draw samples from                       using the sequential Monte 
Carlo method. Collecting the samples for various   , we can obtain a 
set of samples obeying the marginal posterior                     (Andrieu et 
al., 2010)*. 
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*Parrenin, F., et al. (2007): 1-D-ice flow modelling at EPICA Dome C and Dome Fuji, East Antarctica, Clim. Past, v. 3, p. 243.

We consider the following differential equation describing the age-depth relationship:

The age can be obtained by the following integral:

where S indicates the surface of the ice sheet. Thus, this integral means that the age ξ is obtained 
by the integral from the surface.

Assuming a steady state, the thinning function Θ(z) is written using the vertical flow U:

We rescale z and U as follows 

and write the rescaled flow u in the following form:

where A0 denotes the accumulation rate at the surface and m denotes the melting at the base of 
ice sheet. Then, Θ can be rewritten as:

Accroding to Parrenin et al. (2007)*, ω is assumed to be written in the following form: 

z: vertical coordinate for depth from the surface of the ice sheet,
ξ: age in year (past is positive),
A(z): the snow accumulation rate per year,
Θ(z): thinning factor due to the long-term deformation within the ice sheet.
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Ice cores provide vital information on the climatic and 
environmental changes over the past hundreds of 
thousands of years. 

In order to make use of the chronological records from 
ice cores, it is crucial to obtain an accurate estimate of 
the relationship between age and depth in the ice cores. 

The age-depth relationship is mainly dependent on 
the accumulation of snow at the site of the ice core,
and the thinning process due to the horizontal 

stretching and vertical compression of an ice layer. 

The accumulation of snow and the thinning factor are also 
estimated simultaneously with the age as a function of depth.  
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*Kawamura, K., et al. (2007): Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years, Nature, v. 448, p. 912. 

zξ

The vertical profile of the age    is modeled using the following recurrence equations:

where
     :the age at z;
  Z :the depth at the bottom end of the ice core;
  Az :the accumulation rate in the interval from z to z + 1;
  Θz :the thinning factor in the interval from z to z + 1;
  νz :variation of the age due to unknown processes;
  ηz :the variation of the accumulation rate:
(Note that the transition of Az is described using its logarithm in order to guarantee Az > 0. )

Available data and relationship between model variables and data

1 1
1 log og ,, lz z z z z z
z z

A A
A

ξ ξ ν η+ += + + = +
Θ

ξ

We combine     and  Az into one vector xz. The relationship between xz−1 and xz can thus be written as      
p(xz | xz−1,    ) according to the above equations. 
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In order to estimate    z and  Az for each z, we refer to two kinds of data:

We assume the following relationship between an age marker τk and the modeled age    :

and the following relationship is assumed between the accumulation rate Az  and δ18O(z):

δ18O(z): a proxy of the temperature around the site, which is related with the 
accumulation rate,

Age markers: other reliable proxies at several depth levels (Kawamura et al., 2007)*.

ξ

,
kk z kτ ξ ε= +

18O log .z z zA wδ α β= + +

We combine     and        z into one vector yz and write the relationship between xz and yz as  p(yz | xz,   ). zτ θ18Oδ

Sequential model describing the vertical chain

(The uncertainty was evaluated with the difference between the 10th and 90th 
percentiles of the posterior.)
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Blue dotted lines indicate the 10th and 90th percentiles
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