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1 Generalized AUC

We discuss a statistical method of a classification problem for two groups. For
a binary class label y ∈ {0, 1} and a covariate vector x ∈ Rp, we consider
a statistical situation in which the neither conditional distribution of x given
y = 0 nor given y = 1 are well modelled by a specific distribution.

For a sample {x0i : i = 1, . . . , n0} for y = 0 and a sample {x1j : j =
1, . . . , n1} for y = 1 where n = n0 + n1, we propose a generalized u-statistic
defined by

LU (β) =
1

n0n1

n0∑
i=1

n1∑
j=1

U

{
βT(x1j − x0i)

(βTSβ)1/2

}
, (1)

where U is an arbitrary real-valued function: R → R; S is a normalizing
factor given as

S =
1

n

n0∑
i=1

(x0i − x̄0)(x0i − x̄0)
⊤ +

1

n

n1∑
j=1

(x1j − x̄1)(x1j − x̄1)
⊤. (2)

2 Asymptotic consistency and normality

Let us consider the estimator associated with the generalized t-statistic as

β̂U = argmax
β∈Rp

LU (β). (3)

Then we consider the following assumption:

(A) Ey(gy | wy = a) = 0 for all a ∈ R, for y = 0, 1

where wy = βT
0 xy, gy = Qxy, Q = I −Σβ0β

T
0 , Σ∗

y = QΣyQ
T, µ0 + µ1 = 0,

and

β0 =
Σ−1(µ1 − µ0)

{(µ1 − µ0)TΣ−1(µ1 − µ0)}1/2
. (4)

Theorem 2.1 Under Assumption (A), β̂U is asymptotically consistent
with β0 for any U .

Next we consider the following assumption in addition to (A):

(B) vary(gy | wy = a) = Σ∗
y for all a ∈ R, for y = 0, 1

where vary denotes the conditional variance of x given y. Then we assume
mixture model for class label y ∈ {0, 1}.

py(x) =

∞∑
k=1

ϵykϕ(x, νyk, Vyk). (5)

Theorem 2.2 For y = 0, 1 assumptions (A) and (B) under the infinite
mixture model in (5) are equivalent to

(A′)
∑

k∈Kyℓ

ϵk(Q−Qyk) = 0,
∑

k∈Kyℓ

ϵykQykνyk = 0, for ∀ℓ ∈ N, y = 0, 1

(B′)
∑

k∈Kyℓ

ϵyk

{
QykVykQ − QΣyQ

}
= 0, for ∀ℓ ∈ N, y = 0, 1

where Qyk = Ip − Vykβ
∗β∗⊤/(β∗⊤Vykβ

∗), Kyℓ = {k | β∗⊤νyk =

β∗⊤νyℓ, β∗⊤Vykβ
∗ = β∗⊤Vyℓβ

∗}.

Here we assume the following semiparametric model for probability den-
sity functions,

py(x) = ψy(c + β⊤x)(2π)−
p
2|Σy|−

1
2 exp

(
−

x⊤Σ−1
y x

2

)
, for y = 0, 1, (6)

where ψy is a function from R to R+ and there exists λy such that

Σyβ = λyβ, for y = 0, 1. (7)

Theorem 2.3 The target parameter β0 is proportional to β in (6) and
both assumptions (A) and (B) hold for (6).

Theorem 2.4 Under Assumptions (A) and (B), n1/2(β̂U−β0) is asymp-
totically distributed as N(0, ΣU ), where

ΣU = cUΣ∗
0, (8)

cU =
E0

[
E1{U ′(w)}

]2

+ E1

[
E0{U ′(w)}

]2

+ 2ρE{U ′(w)}E{U ′(w)w} −
[
E{U ′(w)w}

]2

[
E{U ′(w)S(w) + U ′(w)w}

]2 ,

(9)

in which S(w) = ∂ log f (w)/∂w, f (w) is the probability density of
w = w1 − w0, ρ = E(w) and U ′ denotes the first derivative of U .

3 Simulation studies

We consider normal mixtures as follows:

x0 ∼ ϵ0N(0, Ip) + (1 − ϵ0)N(ν0, Ip)

x1 ∼ ϵ1N(ν1, V 1) + ϵ2N(ν2, V 2) + (1 − ϵ1 − ϵ2)N(ν3, V 3),

where ν0 = (−2,−0.2, . . . ,−0.2)⊤, ν1 = (3, 0.3, . . . , 0.3)⊤, ν2 =
(4, 0.4, . . . , 0.4)⊤, ν3 = (−1,−0.1, . . . ,−0.1)⊤ ∈ Rp, V 1 = V 2 = V 3 =
Ip,ϵ0 = 0.5, ϵ1 = ϵ2 = 0.1. We consider the following U functions.

1. optimal-U

Uopt(w) = Uupper(w) + a1w + a2w
2 + · · · + amwm, (10)

where the polynomial order m is determined by the cross validation of cU .

2. upper-U

Uupper(w) = log f (w) +
1

2
w2 − ρ3

2 + ρ2
w. (11)

3. approx-U

Uapprox(w) = log f (w) +
ρ

2 + ρ2
w (12)

4. auc-U
Uauc(w) = Φ

(w

σ

)
, (13)

where σ = 0.01.

5. linear-U (Fisher)
Ulinear(w) = w (14)
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Fig1. Squared errors in upper panel and test AUC calculated by independent sample with

size 1000 in lower panel, based on 30 repetitions (p = 20 and n0 = n1 = 50)


