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1 Introduction

Aim: Construct a general estimation method for high-dim. time
series models by penalized QML that gives sparse estimates.

Examples: K-dim. VAR(r) model is defined by

yt = Φ1yt−1+ · · ·+Φryt−r + εt, (1)

which has K2r parameters. K-dim. MGARCH(1,1) is given by

yt = Σ1/2
t εt, Σt =CC⊤+A⊤yt−1y⊤t−1A+B⊤Σt−1B,

which has K(5K +1)/2 parameters.

2 General Theory

2.1 The model and its PQML estimator

Model: Let {yt}T
t=1 be a vector stationary process with a con-

tinuous conditional density g(yt|yt−1,yt−2, . . .). Consider a para-
metric family of densities { f (yt|yt−1,yt−2, · · · : θ) : θ ∈ Θ} s.t.:
• p := dim(θ) = O(nδ) for some δ > 0, so possibly p > n;
• the “true value” θ 0, the unique minimizer of the KLIC of g

relative to f , is sparse.
Define some notation more precisely:
•M0 = { j ∈ {1, . . . , p} : θ 0

j ̸= 0} and M c
0 = {1, . . . , p}\M0;

• θ 0
M0

is the q-dim. subvector of θ 0 composed of the nonzero
elements {θ 0

j : j ∈ M0};
• θ 0

M c
0

is the (p−q)-dim. subvector of θ 0 composed of zeros.

Estimator: The PQML estimator θ̂ of θ 0 is defined by

Qn(θ̂) = max
θ∈Θ

Qn(θ) with Qn(θ) := Ln(θ)−Pn(θ),

where Ln(θ) := n−1 ∑n
t=1 log f (yt|Yt−1 : θ) is the quasi-log-

likelihood and Pn(θ) := ∑p
j=1 pλ(|θ j|) is the penalty term such

as L1-penalty (lasso), SCAD, MCP, etc., with λ (= λn)→ 0.

2.2 Theoretical results

Theorem 1 (Weak oracle property) Under regularity condi-
tions, there is a local maximizer θ̂ = (θ̂⊤

M0
, θ̂⊤

M c
0
)⊤ of Qn(θ) s.t.:

(a) P(θ̂M c
0
= 0)→ 1; (b) ∥θ̂M0 −θ 0

M0
∥∞ = Op(n−γ logn).

Corollary 1 (L1-penalized QML estimator) Under regularity
conditions in Theorem 1, there is a local maximizer θ̂ =
(θ̂⊤

M0
, θ̂⊤

M c
0
)⊤ of QL1n(θ) s.t. Thm. 1 (a) and (b) hold.

Theorem 2 (Oracle property) Under regularity conditions,
there is a local maximizer θ̂ = (θ̂⊤

M0
, θ̂⊤

M c
0
)⊤ of Qn(θ) s.t.:

(a) P(θ̂M c
0
= 0)→ 1; (b) ∥θ̂M0 −θ 0

M0
∥= Op(n−1/2).

If a stronger assumption is added to the penalty, we have
(c) (Asy. N) n1/2

(
θ̂M0 −θ 0

M0

)
→d N

(
0, (J0

M0
)−1I0

M0
(J0⊤

M0
)−1

)
.

3 Application to VAR

3.1 Theoretical result for VAR

Consider (1) with εt ∼ i.i.d. (0,Σε). Let θ 0 = vec(Φ0
1, . . . ,Φ0

r) ∈
Rp with p = K2r, which is supposed sparse. Using some appro-
priate Σ instead of unknown Σε, we have:

Proposition 1 Under some moment and stability conditions,
Thm. 2 (a) – (c) hold for θ̂ in (1), where I0

M0
= P⊤

M0
(Γ⊗

Σ−1ΣεΣ−1)P⊤
M0

and J0
M0

= P⊤
M0

(Γ⊗Σ−1)PM0 with Γ = E[xtx⊤t ].

3.2 Empirical study

Compare performances of sparse VAR and dynamic Nelson-
Siegel (DNS) model in terms of yield curve forecasting.

Data: Zero-coupon US government bond yields that are:

•monthly from January 1986 to December 2007;

•made of 8 maturities τ = 3,6,12,24,36,60,84,120 months.

Model 1: DNS model is defined by

yτt = β1t +β2t

(
1− e−ηtτ

ηtτ

)
+β3t

(
1− e−ηtτ

ηtτ
− e−ηtτ

)
,

βit = ai+biβi,t−h+uit for each i = 1,2,3.

where β1t, β2t and β3t may be interpreted as latent dynamic fac-
tors and ηt is a sequence of tuning parameters.

Model 2: In sVAR strategy, the model is specified as 8-dim.
VAR(12) below and is estimated by SCAD penalized QML.

∆y3,t

∆y6,t
...

∆y120,t

= Φ1


∆y3,t−1

∆y6,t−1
...

∆y120,t−1

+ · · ·+Φ12


∆y3,t−12

∆y6,t−12
...

∆y120,t−12

+ εt.

Forecasting strategy: The two models are estimated recur-
sively, using the data from Jan. 1986 to the time that the
h(= 1,3,6,12)-month-ahead forecast is made, beginning in Jan.
2001 and extending through Dec. 2007.

Result: The comparison result is summarized below:

Table 1: Relative RMSEs of forecasting (sVAR/DNS)
h \ τ 3 6 12 24 36 60 84 120

1 0.356 0.301 0.288 0.279 0.266 0.254 0.258 0.275
3 0.418 0.393 0.358 0.345 0.333 0.324 0.329 0.356
6 0.557 0.513 0.443 0.405 0.391 0.379 0.381 0.400
12 0.625 0.591 0.540 0.492 0.468 0.442 0.435 0.445


