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Penalized Likelihood Estimation
in High-Dimensional Time Series Models

PD

1 Introduction

Aim: Construct a general estimation method for high-dim. time
series models by penalized QML that gives sparse estimates.

Examples: K-dim. VAR(r) model 1s defined by
Vi= P14+ + Py, + &, (1)
which has K*r parameters. K-dim. MGARCH(1,1) is given by
yi=%", L, =CC'+Ay_ 1y \A+B'L,_B
which has K(5K + 1) /2 parameters.

2 General Theory

2.1 The model and its PQML estimator

Model: Let {y,}/_, be a vector stationary process with a con-
tinuous conditional density g(v,|y,_1,¥,—2,...). Consider a para-
metric family of densities { f(y|yi—1,Yr—2,---:0) : 0 € O} s.t.:

o p:=dim(0) = O(n®) for some & > 0, so possibly p > n;

o the “true value” 8, the unique minimizer of the KLIC of g
relative to f, 1s sparse.

Define some notation more precisely:

o My={je{l,....,p}:0) #0} and .5 = {1,..., p}\.Ab;

o 9%0 is the g-dim. subvector of 8° composed of the nonzero
elements {OJQ L JE My}

o 9;/5 is the (p — g)-dim. subvector of 8" composed of zeros.

Estimator: The PQML estimator 8 of 6° is defined by

0,(0) = maxQ,(6) with 0,(6) :=Ly(8) — F.(6).

where L,(0) := n~'Y" log f(y;|Y;—; : 8) is the quasi-log-
likelihood and B,(0) := Y./ pa(|6;]) is the penalty term such
as L;-penalty (lasso), SCAD, MCP, etc., with A (= A,,) — O.

2.2 Theoretical results

Theorem 1 (Weak oracle property) Under regularity condi-
tions, there is a local maximizer 6 = (6 . QJ/ZOC)T of 0,(0) s.t.:
(@) P(6.4s=0) — 1; () |6.4,— 0% ||« = Op(n""logn).
Corollary 1 (L-penalized QML estimator) Under regularity
conditions in Theorem 1, there is a local maximizer 6 =
(6 4. 9}/6;)T of Qr..(0) s.t. Thm. I (a) and (b) hold.

Theorem 2 (Oracle property) Under regularity conditions,
there is a local maximizer 6 = (6, , 9;/5)T of 0,(0) s.t.:

(@) P(6.4s=0) = 1; (b)[|6.4,— 0% = 0,(n"""?).

If a stronger assumption is added to the penalty, we have
(c)(Asy. N)n'?(0,4,— 0% ) —a N (0, (J°,)'1°% (J%,)7).

REHRFABAN B3 - AT LT

ot IR PR

3 Application to VAR

3.1 Theoretical result for VAR

Consider (1) with & ~1.i.d. (0,X;). Let 8" = vec(PY,...,®Y) €
R? with p = K*r, which is supposed sparse. Using some appro-
priate X instead of unknown X, we have:

Proposition 1 Under some moment and stability conditions,
Thm. 2 (a) —(c) hold for 0 in (1), where IO%O = P}/O(F@)
L EE P, andJ, =P, (TQXL )P4 withT =E[xx/].

3.2 Empirical study

Compare performances of sparse VAR and dynamic Nelson-
Siegel (DNS) model in terms of yield curve forecasting.

Data: Zero-coupon US government bond yields that are:

e monthly from January 1986 to December 2007;

e made of 8 maturities T = 3,6, 12,24,36,60, 84, 120 months.
Model 1: DNS model is defined by

| —e l—e
Yor = ﬁlt _l_ﬁZt ( Nt ) | ﬁ3t < N e nﬂ) ;
Bii = a;+biPi;—n+u; foreach i=1,2,3.

where B, B,; and 5, may be interpreted as latent dynamic fac-
tors and 7); 1s a sequence of tuning parameters.

Model 2: In sVAR strategy, the model 1s specified as 8-dim.
VAR(12) below and 1s estimated by SCAD penalized QML.

/ Ay \ / Ay3 ;1 \ / Ayz 12 \
A)j6,t — P, A}’6:,t—1 Fo Dy, A)’6,:t—12 te.
\Ay 120, / \Ay 1204 —1 / \Ay 120,/—12 /

Forecasting strategy: The two models are estimated recur-
sively, using the data from Jan. 1986 to the time that the
h(=1,3,6,12)-month-ahead forecast is made, beginning in Jan.
2001 and extending through Dec. 2007.

Result: The comparison result 1s summarized below:

Table 1: Relative RMSEs of forecasting (sVAR/DNS)

A\t 3 6 12 24 36 60 84 120
1 0.356 0.301 0.288 0.279 0.266 0.254 0.258 0.275
3 0418 0.393 0.358 0.345 0.333 0.324 0.329 0.356
6 0.557 0.513 0.443 0.405 0.391 0.379 0.381 0.400
12 0.625 0.591 0.540 0.492 0.468 0.442 0.435 0.445
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