HEXRNZAITFL,

ALl fm— %2 #®%E

"R EHEIF

'UIIII

1. A stochastic maximal inequality
e The most important special case of the Doob-Meyer decomposition equation
for 1-dimensional martingale difference sequence (§f)g=12 . 18
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e Our stochastic maximal inequality gives an inequality analogue to the
Doob-Meyer decomposition for maxima of finite number of martingale dit-
ference sequences (€ )g=12.., ¢ € I, given by
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[Key points of the proof]

oLet X = (X!, ..., X% be a d-dimensional semimartingale.
§
It6’s inequality. If f € C? and it is concave, then it holds that
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o Put X! := D k<t 52, and define Y*’s by

vii = 131X > max | X7}
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Y= 131X} > max |X]\ X}| > max \X]\} i =2,...,m—1,
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e Then i1t holds that
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e Applying It6’s inequality to f(Z1, ..., Tm, Y1, s Ym) = ¥ O Tiy;), we
have
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where Z = (X?2,Y), M is a local martingale starting from zero and

(X" = E(&)°|Frei]
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2. Strict countability

Under which condition on the set I does the following “monotone convergence
argument” hold true?

lim E [max\X |] [ lim max|X; \] = F |sup|X;]
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2.1. Hint from discussion to define “separability”
[A] Ledoux and Talagrand (1991) used the following definition:

E* | sup X(h)| := sup E
| heH FCH

max X(h)] ,
heF

where the supp~4y is taken over all finite subsets F' of H.

[B] Ledoux and Talagrand (1991) gives also the definition of separability of
random field; there exists a negligible set N and a countable set H* C H
such that, for every w € N€ every h € H and € > 0,

X (h,w) € {X(h,w);h € H*, p(h,h) < e},

and in this case, we can compute as

E |sup X(h)| =FE | sup X(h)
| heH heH*

[D-1953] However, in Doob’s (1953) original definition of separability, the
dense subset 7% C T is taken to be not a countable set but a “se-
quence”.

[D-1984] After three decades later, Doob (1984) again suggested how to
define the concept of “separability” based on “cofinal sequence”.

[D-2004] However, Joseph L. Doob did not explicitely write the definition
of the word “sequence”.

2.2. Definitions and facts

[Definitions]

e A well-ordering < for a set I is called o-ordering if it satisfies that

#(1) < oo for every i € I, where (1) :=={j € I, j < i}.

e A g-ordered set (I, <) is called a sequence.

e A set I is said to be a pre-sequence or strictly countable if it is possible
to assign a o-ordering “<” to I.

e A random feild { X (h); h € H} indexed by a semimetric space (H, p) is
said to be strictly separable if there exists a negligible set N and a strictly
countable set H* C H such that, for every w € N€, every h € H and € > 0,

X(h,w) € {X(h,w):h € H*, p(h,h) < e}.

[Facts]
e About N:

[A1] (N, <), where “<” is the usual ordering for N, is a sequence.

[A2] (N, <), where “< is a “bad” well-ordering for N, may not be a
sequence.

[A3] N, with no ordering, is a pre-sequnce (i.e., a strictly countable set).
e Propreties we actually use:

[B] For any given pre-sequence I, it holds for any o-ordering and any mapping
x: 1l — R,
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where “7,,, n € N’ denotes the corresponding “natural numbering” .
e Properties on union operations:
[C1] If each I%) is strictly countable, then U%:1 1%) is strictly countable.

[C2] The above is not true if d = oo. Actually, N x N is not strictly
countable.

[C3] Any set which can be expressed in the form of an infinite disjoint unifon
of infinite sets is not strictly coutable.

[C4] Even the limit of increasing sequence of finite sets may not be strictly
countable in general.
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