確率的最大不等式,狭義可算性、および関連する話題

西山 陽一 数理·推論研究系 准教授

1. A stochastic maximal inequality

• The most important special case of the Doob-Meyer decomposition equation for **1-dimensional** martingale difference sequence $(\xi_k)_{k=1,2,...}$ is:

$$\left(\sum_{k=1}^{n} \xi_k\right)^2 = \sum_{k=1}^{n} E[\xi_k^2 | \mathcal{F}_{k-1}] + M_n.$$

• Our stochastic maximal inequality gives an inequality analogue to the Doob-Meyer decomposition for maxima of **finite** number of martingale difference sequences $(\xi_k^i)_{k=1,2,...}$, $i \in \mathbb{I}_F$, given by

$$\max_{i \in \mathbb{I}_F} \left(\sum_{k=1}^n \xi_k^i \right)^2 \wedge K \leq \frac{K}{1 - e^{-K}} \left\{ \sum_{k=1}^n E\left[\max_{i \in \mathbb{I}_F} (\xi_k^i)^2 \middle| \mathcal{F}_{k-1} \right] + M_n \right\}.$$

[Key points of the proof]

• Let $X = (X^1, ..., X^d)$ be a d-dimensional semimartingale.

Itô's inequality. If $f \in C^2$ and it is concave, then it holds that

$$f(X_t) - f(X_0)$$

$$\leq \sum_{i=1}^d \int_0^t D_i f(X_{s-}) dX_s^i + \frac{1}{2} \sum_{i=1}^d \sum_{j=1}^d \int_0^t D_{ij} f(X_{s-}) d\langle X^{c,i}, X^{c,j} \rangle_s.$$

ullet Put $X_t^i := \sum_{k \le t} \xi_k^i$ and define Y^i 's by

$$\begin{split} Y_t^1 &= 1 \left\{ |X_t^1| \ge \max_{1 < j \le m} |X_t^j| \right\}, \\ Y_t^i &= 1 \left\{ |X_t^i| > \max_{1 \le j < i} |X_t^j|, \ |X_t^i| \ge \max_{i < j \le m} |X_t^j| \right\}, \quad i = 2, ..., m - 1, \\ Y_t^m &= 1 \left\{ |X_t^m| > \max_{1 \le j < m} |X_t^j| \right\}. \end{split}$$

• Then it holds that

$$\max_{1 \le i \le m} \left(\sum_{k \le t} \xi_k^i \right)^2 = \max_{1 \le i \le m} (X_t^i)^2 = \sum_{i=1}^m (X_t^i)^2 Y_t^i.$$

• Applying Itô's inequality to $f(\widetilde{x}_1,...,\widetilde{x}_m,y_1,...,y_m)=\psi(\sum_{i=1}^m\widetilde{x}_iy_i)$, we have

$$\psi\left(\sum_{i=1}^{m} (X_{t}^{i})^{2} Y_{t}^{i}\right)$$

$$\leq \sum_{i=1}^{m} \int_{0}^{t} \psi'(Z_{s-}) Y_{s-}^{i} d(X_{s}^{i})^{2} + \sum_{i=1}^{m} \int_{0}^{t} \psi'(Z_{s-}) (X_{s-}^{i})^{2} dY_{s}^{i}$$

$$\leq \sum_{i=1}^{m} \int_{0}^{t} \psi'(Z_{s-}) Y_{s-}^{i} d(X_{s}^{i})^{2}$$

$$= \sum_{i=1}^{m} \int_{0}^{t} \psi'(Z_{s-}) Y_{s-}^{i} d(X_{s}^{i})^{2} + M_{t},$$

where $Z = (X^2, Y)$, M is a **local martingale** starting from zero and

$$\langle X^i \rangle_t = \sum_{k \le t} E[(\xi_k^i)^2 | \mathcal{F}_{k-1}].$$

2. Strict countability

Under which condition on the set $\mathbb I$ does the following "monotone convergence argument" hold true?

$$\lim_{m \to \infty} E\left[\max_{i \in \mathbb{I}_m} |X_i|\right] = E\left[\lim_{m \to \infty} \max_{i \in \mathbb{I}_m} |X_i|\right] = E\left[\sup_{i \in \mathbb{I}} |X_i|\right].$$

2.1. Hint from discussion to define "separability"

[A] Ledoux and Talagrand (1991) used the following definition:

$$E^* \left[\sup_{h \in \mathcal{H}} X(h) \right] := \sup_{F \subset \mathcal{H}} E \left[\max_{h \in F} X(h) \right],$$

where the $\sup_{F\subset\mathcal{H}}$ is taken over all **finite** subsets F of \mathcal{H} .

[B] Ledoux and Talagrand (1991) gives also the definition of separability of random field; there exists a negligible set N and a countable set $\mathcal{H}^* \subset \mathcal{H}$ such that, for every $\omega \in N^c$, every $h \in \mathcal{H}$ and $\varepsilon > 0$,

$$X(h,\omega) \in \overline{\{X(\widetilde{h},\omega); \widetilde{h} \in \mathcal{H}^*, \rho(h,\widetilde{h}) < \varepsilon\}},$$

and in this case, we can compute as

$$E\left[\sup_{h\in\mathcal{H}}X(h)\right] = E\left[\sup_{h\in\mathcal{H}^*}X(h)\right].$$

[**D-1953**] However, in Doob's (1953) original definition of separability, the dense subset $T^* \subset T$ is taken to be **not** a **countable set** but a "sequence".

[**D-1984**] After three decades later, Doob (1984) again **suggested** how to define the concept of "separability" based on "**cofinal sequence**".

[**D-2004**] However, Joseph L. Doob did not explicitly write the definition of the word "sequence".

2.2. Definitions and facts

[Definitions]

- A well-ordering < for a set \mathbb{I} is called σ -ordering if it satisfies that $\#\langle i \rangle < \infty$ for every $i \in \mathbb{I}$, where $\langle i \rangle := \{j \in \mathbb{I}; j < i\}$.
- A σ -ordered set $(\mathbb{I}, <)$ is called a sequence.
- A set \mathbb{I} is said to be a *pre-sequence* or *strictly countable* if it is possible to assign a σ -ordering "<" to \mathbb{I} .
- A random feild $\{X(h); h \in \mathcal{H}\}$ indexed by a semimetric space (\mathcal{H}, ρ) is said to be *strictly separable* if there exists a negligible set N and a strictly countable set $\mathcal{H}^* \subset \mathcal{H}$ such that, for every $\omega \in N^c$, every $h \in \mathcal{H}$ and $\varepsilon > 0$,

$$X(h,\omega) \in \overline{\{X(\widetilde{h},\omega); \widetilde{h} \in \mathcal{H}^*, \rho(h,\widetilde{h}) < \varepsilon\}}.$$

[Facts]

• About N:

[A1] $(\mathbb{N}, <)$, where "<" is the usual ordering for \mathbb{N} , is a sequence.

[A2] $(\mathbb{N}, <^b)$, where " $<^b$ " is a "bad" well-ordering for \mathbb{N} , may not be a sequence.

[A3] N, with no ordering, is a pre-sequence (i.e., a strictly countable set).

• Propreties we actually use:

[B] For any given pre-sequence \mathbb{I} , it holds for any σ -ordering and any mapping $x: \mathbb{I} \to \mathbb{R}$,

$$\lim_{m \to \infty} \max_{1 \le n \le m} x(i_n) = \sup_{i \in \mathbb{I}} x(i),$$

where " i_n , $n \in \mathbb{N}$ " denotes the corresponding "natural numbering".

• Properties on union operations:

[C1] If each $\mathbb{I}^{(k)}$ is strictly countable, then $\bigcup_{k=1}^d \mathbb{I}^{(k)}$ is strictly countable.

[C2] The above is not true if $d = \infty$. Actually, $\mathbb{N} \times \mathbb{N}$ is **not** strictly countable.

[C3] Any set which can be expressed in the form of an infinite disjoint unifon of infinite sets is **not** strictly coutable.

[C4] Even the limit of increasing sequence of finite sets may not be strictly countable in general.