確率的最大不等式，狭義可算性，および関連する話題

西山 陽一 数理•推論研究系 准教授

1．A stochastic maximal inequality
－The most important special case of the Doob－Meyer decomposition equation for 1－dimensional martingale difference sequence $\left(\xi_{k}\right)_{k=1,2, \ldots}$ is：

$$
\left(\sum_{k=1}^{n} \xi_{k}\right)^{2}=\sum_{k=1}^{n} E\left[\xi_{k}^{2} \mid \mathcal{F}_{k-1}\right]+M_{n}
$$

－Our stochastic maximal inequality gives an inequality analogue to the Doob－Meyer decomposition for maxima of finite number of martingale dif－ ference sequences $\left(\xi_{k}^{i}\right)_{k=1,2, \ldots,}, i \in \mathbb{I}_{F}$ ，given by

$$
\max _{i \in \mathbb{I}_{F}}\left(\sum_{k=1}^{n} \xi_{k}^{i}\right)^{2} \wedge K \leq \frac{K}{1-e^{-K}}\left\{\sum_{k=1}^{n} E\left[\max _{i \in \mathbb{I}_{F}}\left(\xi_{k}^{i}\right)^{2} \mid \mathcal{F}_{k-1}\right]+M_{n}\right\}
$$

［Key points of the proof］
－Let $X=\left(X^{1}, \ldots, X^{d}\right)$ be a d－dimensional semimartingale．
Itô＇s inequality．If $f \in C^{2}$ and it is concave，then it holds that

$$
\begin{aligned}
& f\left(X_{t}\right)-f\left(X_{0}\right) \\
& \leq \sum_{i=1}^{d} \int_{0}^{t} D_{i} f\left(X_{s-}\right) d X_{s}^{i}+\frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d} \int_{0}^{t} D_{i j} f\left(X_{s-}\right) d\left\langle X^{c, i}, X^{c, j}\right\rangle_{s}
\end{aligned}
$$

\bullet Put $X_{t}^{i}:=\sum_{k \leq t} \xi_{k}^{i}$ and define $Y^{i}{ }^{\text {，}}$ by

$$
\begin{aligned}
Y_{t}^{1} & =1\left\{\left|X_{t}^{1}\right| \geq \max _{1<j \leq m}\left|X_{t}^{j}\right|\right\} \\
Y_{t}^{i} & =1\left\{\left|X_{t}^{i}\right|>\max _{1 \leq j<i}\left|X_{t}^{j}\right|,\left|X_{t}^{i}\right| \geq \max _{i<j \leq m}\left|X_{t}^{j}\right|\right\}, \quad i=2, \ldots, m-1 \\
Y_{t}^{m} & =1\left\{\left|X_{t}^{m}\right|>\max _{1 \leq j<m}\left|X_{t}^{j}\right|\right\}
\end{aligned}
$$

－Then it holds that

$$
\max _{1 \leq i \leq m}\left(\sum_{k \leq t} \xi_{k}^{i}\right)^{2}=\max _{1 \leq i \leq m}\left(X_{t}^{i}\right)^{2}=\sum_{i=1}^{m}\left(X_{t}^{i}\right)^{2} Y_{t}^{i}
$$

－Applying Itô＇s inequality to $f\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{m}, y_{1}, \ldots, y_{m}\right)=\psi\left(\sum_{i=1}^{m} \widetilde{x}_{i} y_{i}\right)$ ，we have

$$
\begin{aligned}
& \psi\left(\sum_{i=1}^{m}\left(X_{t}^{i}\right)^{2} Y_{t}^{i}\right) \\
& \leq \sum_{i=1}^{m} \int_{0}^{t} \psi^{\prime}\left(Z_{s-}\right) Y_{s-}^{i} d\left(X_{s}^{i}\right)^{2}+\sum_{i=1}^{m} \int_{0}^{t} \psi^{\prime}\left(Z_{s-}\right)\left(X_{s-}^{i}\right)^{2} d Y_{s}^{i} \\
& \leq \sum_{i=1}^{m} \int_{0}^{t} \psi^{\prime}\left(Z_{s-}\right) Y_{s-}^{i} d\left(X_{s}^{i}\right)^{2} \\
& =\sum_{i=1}^{m} \int_{0}^{t} \psi^{\prime}\left(Z_{s-}\right) Y_{s-}^{i} d\left\langle X^{i}\right\rangle_{s}+M_{t}
\end{aligned}
$$

where $Z=\left(X^{2}, Y\right), M$ is a local martingale starting from zero and

$$
\left\langle X^{i}\right\rangle_{t}=\sum_{k \leq t} E\left[\left(\xi_{k}^{i}\right)^{2} \mid \mathcal{F}_{k-1}\right]
$$

2．Strict countability

Under which condition on the set \mathbb{I} does the following＂monotone convergence argument＂hold true？

$$
\lim _{m \rightarrow \infty} E\left[\max _{i \in \mathbb{I}_{m}}\left|X_{i}\right|\right]=E\left[\lim _{m \rightarrow \infty} \max _{i \in \mathbb{I}_{m}}\left|X_{i}\right|\right]=E\left[\sup _{i \in \mathbb{I}}\left|X_{i}\right|\right]
$$

2．1．Hint from discussion to define＂separability＂
［A］Ledoux and Talagrand（1991）used the following definition：

$$
E^{*}\left[\sup _{h \in \mathcal{H}} X(h)\right]:=\sup _{F \subset \mathcal{H}} E\left[\max _{h \in F} X(h)\right]
$$

where the $\sup _{F \subset \mathcal{H}}$ is taken over all finite subsets F of \mathcal{H} ．
［B］Ledoux and Talagrand（1991）gives also the definition of separability of random field；there exists a negligible set N and a countable set $\mathcal{H}^{*} \subset \mathcal{H}$ such that，for every $\omega \in N^{c}$ ，every $h \in \mathcal{H}$ and $\varepsilon>0$ ，

$$
X(h, \omega) \in \overline{\left\{X(\widetilde{h}, \omega) ; \widetilde{h} \in \mathcal{H}^{*}, \rho(h, \widetilde{h})<\varepsilon\right\}}
$$

and in this case，we can compute as

$$
E\left[\sup _{h \in \mathcal{H}} X(h)\right]=E\left[\sup _{h \in \mathcal{H}^{*}} X(h)\right]
$$

［D－1953］However，in Doob＇s（1953）original definition of separability，the dense subset $T^{*} \subset T$ is taken to be not a countable set but a＂se－ quence＂．
［D－1984］After three decades later，Doob（1984）again suggested how to define the concept of＂separability＂based on＂cofinal sequence＂．
［D－2004］However，Joseph L．Doob did not explicitely write the definition of the word＂sequence＂．

2．2．Definitions and facts

［Definitions］

－A well－ordering $<$ for a set \mathbb{I} is called σ－ordering if it satisfies that
$\#\langle i\rangle<\infty$ for every $i \in \mathbb{I}$ ，where $\langle i\rangle:=\{j \in \mathbb{I} ; j<i\}$ ．
－A σ－ordered set $(\mathbb{I},<)$ is called a sequence．
－A set \mathbb{I} is said to be a pre－sequence or strictly countable if it is possible to assign a σ－ordering＂$<$＂to \mathbb{I} ．
－A random feild $\{X(h) ; h \in \mathcal{H}\}$ indexed by a semimetric space (\mathcal{H}, ρ) is said to be strictly separable if there exists a negligible set N and a strictly countable set $\mathcal{H}^{*} \subset \mathcal{H}$ such that，for every $\omega \in N^{c}$ ，every $h \in \mathcal{H}$ and $\varepsilon>0$ ，

$$
X(h, \omega) \in \overline{\left\{X(\widetilde{h}, \omega) ; \widetilde{h} \in \mathcal{H}^{*}, \rho(h, \widetilde{h})<\varepsilon\right\}}
$$

［Facts］

－About \mathbb{N} ：

［A1］$(\mathbb{N},<)$ ，where＂$<$＂is the usual ordering for \mathbb{N} ，is a sequence．
［A2］$\left(\mathbb{N},<^{b}\right)$ ，where＂$<^{b "}$ is a＂bad＂well－ordering for \mathbb{N} ，may not be a sequence．
［A3］ \mathbb{N} ，with no ordering，is a pre－sequnce（i．e．，a strictly countable set）．
－Propreties we actually use：
［B］For any given pre－sequence \mathbb{I} ，it holds for any σ－ordering and any mapping $x: \mathbb{I} \rightarrow \mathbb{R}$ ，

$$
\lim _{m \rightarrow \infty} \max _{1 \leq n \leq m} x\left(i_{n}\right)=\sup _{i \in \mathbb{I}} x(i)
$$

where＂$i_{n}, n \in \mathbb{N}$＂denotes the corresponding＂natural numbering＂．
－Properties on union operations：
［C1］If each $\mathbb{I}^{(k)}$ is strictly countable，then $\bigcup_{k=1}^{d} \mathbb{I}^{(k)}$ is strictly countable．
［C2］The above is not true if $d=\infty$ ．Actually， $\mathbb{N} \times \mathbb{N}$ is not strictly countable．
［C3］Any set which can be expressed in the form of an infinite disjoint unifon of infinite sets is not strictly coutable．
［C4］Even the limit of increasing sequence of finite sets may not be strictly countable in general．

