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1 Introduction

By the introduction of AIC (Akaike, 1973) it is recognized that many important statistical
problems could be formulated as model selection problems. Necessary statistical modeling
is the task not only of expert statisticians, but of all those who concern with the data
analysis. Here the log likelihood maximization is the key operation. Typical steps for the
statistical problem solving are as follows:

1. model building

2. log likelihood maximization

3. AIC computation and model selection
4. interpretation of the results.

The hindrance there, if any, is the difficulty of numerical maximization of the likelihood.

Numerical procedures should be used for the maximization. Traditional statistical
procedures seem to be designed so that the computing cost will be as low as possible.
However, taking into account the recent development of computing technology, we need not
be afraid of some computation. We may relax our attachment to the analytical methods,
so that we will be able to concentrate our attention more on the physical aspect of data.

The optimization procedure should be one that works without user supplied gradient
evaluation algorithm. The run-time cost could be reduced by the gradient evalulation
algorithm. However, it is usual that the necessary effort to write down the algorithm is
substantial and it is not rare that the obtained algorithm contradicts the algorithm for
the calculation of the function value. When the analysts is groping for a good model to
describe a given phenomenon, the expectation of the possible trouble often suppresses the
desire to develop some better ideas.
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The purpose of the present article is to propose one working procedure which meets the
above stated requirements. We do not claim that ours is the best of all the optimization
techniques in the literature. We do not even try to compare the performances of methods.
We just make public our procedure and encourage every data analyst to participate in
the model building game. Those who are interested in other methods are refered to, for
example, Douke & Asano (1989), Kowalik & Osborne (1968), Kiinzi et al. (1968), Lavi &
Vogl (1966) and Powell (1981).

2 DALL

Read "DALL” so that it rhymes with ”call”. Following the above reasoning, we proposed,
in 1996, a FORTRAN subroutine DALL for numerical maximization of the log likelihood
function which was based on Davidon’s algorithm (Davidon, 1968) and numerical differen-
tiation. The choice of the Davidon’s algorithm was based on the experience of the second
author in the implementation of the maximum likelihood procedure for ARMA time series
model in TIMSAC-74 (Akaike et al., 1985). The subroutine BILL for Davidon’s algorithm
is a FORTRANT7 version of the maximization procedure in TIMSAC-74. The construc-
tion and coding of DALL was mainly done by the first author. Now we propose a new
FORTRAN version and an equivalent C version. The flow chart of DALL is given as
Figure 1.

2.1 Davidon’s Algorithm

Assume that a function ¢ has the form
1
d(x) = do + 5(33 —x0)" Vg (@ — ), (1)

where VO_1 is a negative definite matrix, then the relation between the gradient at a point
x and the maximizing point is given by

g="V (x—m). (2)

That is, if the variance Vp of the function (1) is known and the gradient at a point is
known the maximizing point is readily calculated by

xr — V()g. (3)

On the other hand, if gradients at sufficient number of points are known V{ can be esti-
mated. Assuming that the object function is well approximated by a quadratic function,
Davidon’s variance algorithm (Davidon, 1968), a typical quasi-Newton method, is con-
structed on these two facts.

Notes to Figure 1

(1) The gradient is computed numerically by

where e; is the unit vector of the i-th axis and IP is the dimension of the parameter
vector 0. This computation can (and should, if possible) be executed parallely.

(2) The difference between SPHI and the maximum value is given by
1 Tv—l
5 (@ —a0) Vo (@4 — 20),

which is equal to

1
§ngog*- (5)

RHO is the twice of an estimate of this value. It is implicitly assumed that the
variance V, is sufficiently close to Vj.
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Figure 1. Flow chart of DALL

(3) Under the present assumptions, if V,, = V) then g, = 0 and the procedure ends. The
fact that g, # 0 is an evidence of V,, # Vp. If (1) is the correct form, Vj satisfies

Ly — Tk :Vb(gn_g*) (6)



Define v = —g1'V,,g,/RHO, then \, = |y/(y + 1)|.

(4) If LAMBDA = 1, V,, is not improved. If LAMBDA =1 is far from 1 the modi-
fication might be too drastic, especially if the assumed form (1) of the function is
dubious.

The careful choice of o and g, which appear in step 3.(c), is important. The choice
is discussed by Davidon(1968) and a = 10~3 and 3 = 10 are suggested as reasonable
choices. However, based on our own experience of the use of the procedure we set a
and 3 equal to 0.25 and 4.0, respectively.

(5) Generally, the shape of a K-dimensional matrix A is known by calculating { Ab;, Abs,
Abs, ..., Abk}, where {b1,ba, bs,...,bx} is an orthogonal system of K vectors. If
we choose the basis so that by = V,,g,, we have relations

Vat1bj =Vob; (j=2,...,K). (7)

(6) Tis path is not a part of Davidon’s original algorithm.

2.2 DALL

Explanations hereafter are for the FORTRAN version. It should not be too difficult
translate the following text into words of C.

Usage Prepare
subroutine model(a,ip,el,lel)

to compute the log likelihood, initial guess ‘a’ of parameter and step sizes step(1), step(2),
..., step(ip) for numerical differentiation, and

call dall (model,a,ip,el,g vd,endc,step,limit,lpsw),

then the variable ‘el’ gives the maximum log likelihood. The specification for the make of
‘model’ is as follows:

e The number of free parameters is given in ‘ip’.

e Parameter values are set in ‘a’.

e Set log likelihood value in ‘el’.

e Set ‘lel’=0, if given ‘a’ is out of domain of the log likelihood. Otherwise set ‘lel’=1.

The meaning of other arguments are summarized in Table 1.

Table 1 Arguments of DALL

Argument Meaning

model input. subroutine name.

a(ip) input/output. parameters.

ip input. number of free parameter.

el output. maximum log likelihood.

g(ip) output. final gradient estimate.

vd(ip,ip+5) output/work area.

endc output. end code.

step(ip) input. step size vector for the numerical differentiation.
limit input. NCOUNT limit. limit=0 indicates no limit.
Ipsw input. output level control (see Table 3)




Outputs Arguments for outputs are picked up in Table 2. Table 3 summarizes output
control by variable ‘Ipsw’.

Table 2 Results of DALL
Argument Contents

a(ip) estimated parameters.

el maximum loglikelihood estimation.

g(ip) final gradient estimate.

vd(ip,ip)  final inverse Hessian estimate.

endc end code. NCOUNT + LCODE/100. see Table 4.

Table 3 Output control

Ipsw  Output
0 No print out, with exceptions of fatal errors.
1 Summary print out only
2 Minimum report from the outer loop of the procedure
3 Full report from the inner loop of the procedure

When ‘lpsw’ is greater than 1, “grobal profile of the log likelihood” is given. This ‘graph’
shows the profile of the log likelihood along the bee-line from the initial point to the final
point.

When ‘lpsw’ is set equal to 0, user has to check ‘endc’ variable to know the status.
‘endc’ is defined by

endc= NCOUNT + LCODE/100

where LCODE has the meaning summarized in Table 4.

Table 4 LCODE

lcode Meaning
0 Davidon’s algorithm ended successfully with RHO < ¢
50 NCOUNT reached given limit. Computation is not completed.
70  Davidon’s algorithm reached dead end with LAM BDA < Xjjy,
71 Davidon’s algorithm reached dead end with ISPHI = ISPH I};;,
72 x, can’t be evaluated.
85 Bad initial guess! ‘model’ can’t be evaluated at the initial point ;.
90 Setting of lel variable in ‘model’ is incorrect.
95 Step vector has zero element. Numerical differentiation impossible.

3 Numerical Examples

3.1 One dimensional optimization

This example gives a side view of the performance of DALL. Assume that we conducted
coin tossing n times and got m times “top”. Then the log likelihood function of the
probablity p of getting “top” is given by

{(p) = mlogp + (n —m)log(l —p). (8)

Actually MLE is analytically calculated to be p = m/n.

The example is for the case n = 12, m = 76 and then p = 0.158. We can see how
Dall finds the maximum value staring from 0.9 as the initial guess in Fig.2. It is seen that
quadratic function model

1
o(@) = b+ 5@ —a) "V, (@ - w.), (9)
fitted to the data is improved gradually. The position of the tangent point of the graph

of {(p) and the graph of the model is xcount. Fig.3 and Fig.4 show the program and
its output, respectively.
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Figure 2 Numerical maximization of the log likelihood of a binomial model.

implicit real*8 (a-h,o0-z)

parameter (ipmax=5)

dimension g(ipmax), vd(ipmax,ipmax+5)
dimension al(ipmax),step(ipmax)
common /cmodel/ m,ml

external modelO

m =76

ml = 12

do 1 i=1,ipmax

step(i) = 0.001d0

ipl=1

al(1) = 0.9d0

call dall(modelO,al,ipl,el,g,vd,endc,step,0,3)
stop

end

subroutine modelO(par,np,el,lel)
implicit real*8 (a-h,o0-z)

common /cmodel/ m,ml

dimension par(np)

lel =0

di = par(1)

if(di .le. 0.d0) return

if(di .ge. 1.d0) return



0 OO0y U mooooowoomn OY

[ssfvs]
N W

|wlwlw)
[rQrtiry

W NN DN N WWWWWWWWW

1 * dlog(di) + (m-ml1) * dlog(1.d0-di)

Figure 3. Program for binomial model fitting.
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Figure 4. A result of binomial model fitting.

3.2 Two-dimensional Optimization

This example gives a ‘bird’s eye view’ of the performance of DALL. The following function

is an artificial function. Not a real log likelihood function.

Here, » = 40.0. The function takes the maximum value 0.0 at point B(0,0) shown in the

top-left panel of Fig.5-1. The initial guess is taken at point A(—2.5, —3.0). Two contour

Flay) = =5 {r® 4o+ y)? + (@ + 32 +y)%)

curves in dotted line at 1.0 and 10.0 below the highest point are drawn in the figure.
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Figure 5-1. Search process by Davidon’s algorithm.

Character ‘C’ in the panel titled NCOUNT = 51, indicates the position of the point xs;.
The solid oval is the contour line at the level of ¢, — 10.0 of the model(9) estimated based
on information obtained up to this moment. The function value at point x,, the center of
the oval, is less that the value at x5; and it turned out that this model is not good and
Tsoissetequaltoxs;. The model is modified to get one shown the in figure titled NCOUNT
= 52, the function value at x.(D) is larger than that at xs2 and xssissetequaltox..
TIterating this process (see Figs. 5-2 and 5-3), we get the result shown in the figure titled
NCOUNT=70 at top-right panel. Two ovals in solid line in the fugure are contour lines
at levels of ¢, — 1.0 and ¢, — 10.0. It is clear that fitting of the last model is poor globally
in this case. But the local structure of the object function is captured by the model.
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Figure 5-2. (continued)

The print out of DALL is shown in Figure 3. The “graph” composed of * and X at the end
of the figure shows profile of the object function along the line from point A to B. Since
this “graph” does not show the function values at points x1,xs, ..., it does not increase
monotonically. Seeing this “graph” we can get some information if the object function has
an easy shape or not.
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D2:val. dif.= 7.60

D2 :NCOUNT= 70

D1:Bill ended with abs(RHO) < rhomin.
D2 :========== Summary =========
D1:value= 0.00

D1:point

-0.97975D-06 -0.80570D-03
D2:final gradient

0.34650D-01 0.33076D-01
20.28

Di:val. di
D2:globa1 proflle
-40.00 -30.00 -20.00 -10.00 0.00 10.00
1 *XXXXX !
2 ! XXXXX*
3 ! XXXXX*X
4 XXXX*XXXXX
5 XX*XXXX
6 *XX
7 *XXXX
8 XXXX*xXXXXXX
9 XAXXXX*XXXXXX
10 XXXXXX*XX
11 ! XX*
D1:Hessian reset count = 11
Dl:end code =70. ) )
D1 :============= end of maximization ===========
Figure 60utput of DALL
3.3 Constrained Gaussian model fitting
Let z1,...,z, be data. The log likelihood of a normal distribution model with respect to
the data is given by
n n 1
lz(,um,afc):—ilog%r— §1oggi_ﬁiﬂ(%_uz)2. (11)
For data y1,...,¥yn;
Ny
2y _ 1 L 2
ly(,uy,ay)f—ilog%r—glogay 5 52} . (12)
(3
MLE’s of i, and o2 are
1 n
-1y
n-
i=1
and
1 Ny
6'325 = - Z(xz ﬂx)Qa
e i3

Similar expression for fi,, 05 can be given.

For data z = {0.73,—0.06,1.04,2.29,0.51, —0.45, 1.03, 0.44,0.02, 0.11, —2.42} MLE’s
are

fi. = 0.2945
62 = 1.2267

and MLE's for data y = {0.10,0.56, —1.11, —0.48, 3.46, —2.39, 0.36, 4.56} are

fy, = 0.6325

6, = 4.6491.

The log likelihood for the model with the constraint p, = 1, is given by
n n 1 &
lm+y(:um+yv Jiv Ji) = _5 IOg 2 — 5 IOg Ji 5 9 (:L'i - Mm+y)2
Oy ©
n n 9
—§log27r—510gay 55 QZ umﬂ,
= Zx(ﬂx+yaai)'*ly(ﬂx+ya05)- (13)

11



The problem of analytical maximization of the function is equvalent to solving an algebraic
equation of order three. Instead, let DALL solve the problem. Prepare subroutines shown
in Fig.7.

Subroutines 11x, 11y and 11xy, are composed so that they compute log likelihood for
parameter value specifies by the array p of length m. As eq.(13) show the subroutin 11xy
is composed so that it calls 11x and 11y. The main routine and results aare shown as
Figures 8 and 9, respectively. From the resultant relation

AICz 4+ AICy = 37.46 + 39.00 = 76.46 > 74.62 = AICzy

supports the assumption g, = py.

subroutine 11lx(p,m,el,lel)

implicit real*8 (a-h,o-z)

dimension p(m)

common /i721/ n

common /r721/ x(11)

data pi /3.14159265d0/

lel=0

if(p(2) .gt. 0.d0) then
§877%:98 o

sum=sum+ (x (1) -p (1)) **2

1 continue
el= -n*0.5%( dlog(pi*2)+dlog(p(2)) ) - 0.5*sum/p(2)

endl?%=1
regurn
en

subroutine 1ly(p,m,el,lel)
implicit real*8 (a-h,o0-z)
dimension p(m)

common /i722/ n

common /r722/ x(8)

data pi /3.14159265d40/

lel=0
if(p(2) .gt. 0.d0) then
ngioigg,n
sum=sum+ (x (1) -p (1)) **2

1 continue
el= -n*0.5%( dlog(pi*2)+dlog(p(2)) ) - 0.5xsum/p(2)

subroutine 1llxy(p,m,el,lel)
implicit real*8 (a-h,o-z)
dimension p(m),px(2),py(2)
px(1)=p(1)

px(2)=p(2)

call 11x(px,2,elx,lel)
if(lel .eq. 0) return
py(D=p(1)

py(2)=p(3)

call 11y(py,2,ely,lel)
if(lel .eq. 0) return
el=elx+ely

regurn

en

block data ex72

implicit real*8 (a-h,o0-z)
common /i721/ nil

common /r721/ x1(11)
common /i722/ n2

common /r722/ x2(8)

data n1/11/

data x1/ 0.73, -0.06, 1.04, 2.29, 0.51,

* -0.45, 1.03, 0.44, 0.02, 0.11,
* -2.42 /

data n2/8/

data x2/ 0.10, 0.56, -1.11, -0.48, 3.46,
* -2.39, 0.36, 4.56 /

end

Figure 7. Subroutines to compute log likelihood of
Gaussian models and constrained Gaussian model.

parameter (ipmax=4)
implicit real*8( a-h,o-z )

12
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dimension ax(ipmax),ay(ipmax),axy(ipmax)
dimension g(ipmax), vd(ipmax,ipmax+5),step(ipmax)
external 11x,1ly,llxy

myid = 0

do 1 i=1,ipmax

step(i) = 0.001d0

ipx=2
ax(1) = 0.40
ax(2) = 1.40

call dall(llx,ax,ipx,el,g,vd,endc,step,0,3)
if (myid .eq. 0) then
write(6,*) ’ meanx(mle)=’,ax(1)
write(6,*) ’ variancex(mle)=’,ax(2)
write(6,*) ’ maximum likelihood=’,el
write(6,*) ’ number of parameter=’,ipx
aic= -2%el + 2*ipx
write(6,’(’’ AICx=’’,F10.2)’) aic

end if
ipy=2
ay(1) = 0.d0
ay(2) = 1.d0

call dall(lly,ay,ipy,el,g,vd,endc,step,0,3)
if (myid .eq. 0) then
write(6,*) ’ meany(mle)=’,ay(1)
write(6,*) ’ variancey(mle)=’,ay(2)
write(6,*) maximum likelihood=’,el
write(6,*) ’ number of parameter=’,ipy
aic= -2%el + 2*ipy
write(6,’(’’ AICy=’’,F10.2)’) aic

J
J
J
J

end if

ipxy=3

axy(1) = (ax(1) + ay(1))*0.5d0
axy(2) = ax(2)

axy(3) = ay(2)

call dall(llxy,axy,ipxy,el,g,vd,endc,step,0,3)
if (myid .eq. 0) then
write(6,*) ’ meanxy(mle)=’,axy(1)
write(6,*) °’ variancedxl(mle)=’,axy(2)
write(6,*) ’ variancey(mle)=’,axy(3)
write(6,*) ’ maximum likelihood=’,el
write(6,*) ’ number of parameter=’,ipxy
aic= -2%el + 2*ipxy
)

write(6,’(’’ AICxy=’’,F10.2)’) aic
end if
stop
end
Figure 8. A main program to fit Gaussian distribution model
and constrained Gaussian distribution model.
i==========]Jog likelihood maximization =========
:number of processor = 1
:limit =
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Figure 9. Fitting of Gauss model and constrained Gauss model.

4 Distributed files

DALL package summarized in Table 5 can be obtained at
http://www.ism.ac.jp/software/ismlib/soft.e.html

Table 5. ARdock package

file name contents

README Latest announcement

exampled.f log likelihood subroutines and main program for the third example
and DALL routine in FORTRAN

gauss.c log likelihood subroutines and main program for the third example in C
dall_pack.c DALL routine in C

nrutil.h a headder file required by dall_pack.c

Makefile sample makefile for C version for Unix environment

dall.ps post script file of this monograph

Note: FORTRAN version DALL routine contained in this file is the one extracted from
ARdock package. Those users who are interested in using DALL on a parallel computer
are invited to down-load the source code of ARdock package.

ARdock, an Auto-Regressive model analyzer
Copiright_0OML 1999Makio Ishiguro, Hiroko Kato & Hirotugu Akaike
(http://www.ism.ac. jp/software/ismlib/soft.e.html)

So far, the test of DALL is successfully done in environments summarized in the fol-
lowing Table.

Table 6. Computation Environments

Hardware Operating System Compiler

HITACHI SR8000 HI-UX/MPP FORTRAN90

HP9000V2250 HP-UX 11.0 HP Fortran 90

IBM R/6000 SP AIX Version 4 AIX XL Fortran

SGI Origin 2000/4-DS-I  IRIX Release 6.4 IP27  FORTRAN90

SPARCstation 5 Sun OS 4.1.4-JLE 1.1.4 g77 version0.5.23

PC-9801 nx/C MS-DOS 5.00A-H Microsoft FORTRAN Version 4.01

4.1 Licencing policy

We make public the source code of DALL under the open market licence policy proposed
by the Institute of Statistical Mathematics.

Open Market Licence for software(version:OML-SW-E-1996)

0. In the following, “Copyright_ OML notice” means “the copyright notice
with a statement saying that the said software is made public under this
Open Market Licence for software”.

1. On the condition that “Copyright_ OML notice” and attached statements
are copied as they are, all or any portion of the said software can be copied
or redistributed.

2. Modification of the software is permitted, provided that the exact place
of the modification, the date and the name of the modifier are shown
conspicuously.

3. Tt is forbidden to apply for a patent on the software which utilizes the
said software.
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4. The said software is distributed without any warranty. The copyright
holder takes no responsibility for any damage caused by the use of the
said software.

5. Any interactively controlled application made utilizing the said software
has to show “Copyright_OML notice” and attached statements conspicu-
ously when it is started up.

For the healthy development of software science, suitable form of the licencing is im-
portant. We definitely would like to claim our copyright to DALL. And we would like
to use our copyright to let all concerned people use DALL source code freely under two
conditions that (1) our credit is properly referred and (2) statements attached to the copy-
right note saying that the original DALL source code is distributed from the specified site
without charge are kept as they are. We permit modification or redistribution of DALL
source code as far as these two conditions are met. The redistribution may be with or
without charge.

[Recommended form of reference/acknowledgment] When you are to publish
software xxxxx, which utilizes DALL, here is an example of making reference to DAL-
L.

xxxxx Copyright, 20yy uuuuu

xxxxx utilizes DALL, with here and there modifications. The places of modi-
fications are indicated in the code.

DALL A subroutine for statistical model builders

Copyright_ OML, 1996, 1999 M. Ishiguro and H. Akaike

The source code of this software can be obtained from ISMLIB™) of the In-
stitute of Statistical Mathematics without any charge. On the conditions that
terms of the OPEN MARKET LICENCE(®) for software are observed and that
the copyright holder nor the Institute of Statistical Mathematics take no re-
sponsibility on any result from the use, the program can be used or modified
freely. On the condition that this note is attached as it is, DALL can be redis-
tributed.

(1) http://www.ism.ac.jp/software/ismlib /soft.e.html

(2) ftp://ftp.ism.ac.jp/pub/ISMLIB/OML/OML-SW-E-1996
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