Dependence Structure of Bivariate Order Statistics and its Applications

Xiaoling Dou 新領域融合研究センター 融合プロジェクト特任研究員

Abstract

We study the dependence structure of bivariate order statistics，and prove that if the underlying bivariate distribution H is positive quadrant depen－ dent（PQD）then so is each pair of bivariate order statistics．As an applica－ tion，we show that if H is PQD，the bivariate distribution $K_{+}^{(n)}$ ，proposed by Bairamov and Bayramoglu（2012），is greater than or equal to Baker＇s（2008） distribution $H_{+}^{(n)}$ ．We also show that if H is PQD，$K_{+}^{(n)}$ converges weakly to the Fréchet－Hoeffding upper bound as n tends to infinity．

Introduction

Bivariate order statistics

Suppose that $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \sim^{\text {i．i．d．}} H(x, y)=\operatorname{Pr}(X \leq x, Y \leq y)$ ．

$$
\text { Marginals : } F(x):=\operatorname{Pr}(X \leq x) ; \quad G(y):=\operatorname{Pr}(Y \leq y)
$$

Order statistics：$X_{1, n} \leq X_{2, n} \leq \cdots \leq X_{n, n} ; \quad Y_{1, n} \leq Y_{2, n} \leq \cdots \leq Y_{n, n}$
Distribution functions：

$$
\begin{aligned}
F_{r, n}(x) & :=\operatorname{Pr}\left(X_{r, n} \leq x\right)=\sum_{i=r}^{n}\binom{n}{i} F^{i}(x)(1-F(x))^{n-i} \\
G_{s, n}(y) & :=\operatorname{Pr}\left(Y_{s, n} \leq y\right)=\sum_{j=s}^{n}\binom{n}{j} G^{j}(y)(1-G(y))^{n-j}
\end{aligned}
$$

When X and Y are independent：$H(x, y)=F(x) G(y)$ ，the joint distri－ bution of $\left(X_{r, n}, Y_{s, n}\right)$ ：

$$
\begin{aligned}
K_{r, s}^{(n)}(x, y) & :=\operatorname{Pr}\left(X_{r, n} \leq x, Y_{s, n} \leq y\right) \\
& =\operatorname{Pr}\left(X_{r, n} \leq x\right) \operatorname{Pr}\left(Y_{s, n} \leq y\right)=F_{r, n}(x) G_{s, n}(y)
\end{aligned}
$$

When X and Y are not independent，the joint distribution of $\left(X_{r, n}, Y_{s, n}\right)$ ：
$K_{r, s}^{(n)}(x, y):=\operatorname{Pr}\left(X_{r, n} \leq x, Y_{s, n} \leq y\right)$
$=\operatorname{Pr}$（at least r of the $X_{\ell}^{\prime} s$ are $\leq x$ ，at least s of the $Y_{\ell}^{\prime} s$ are $\leq y$

$$
=\sum_{i=r}^{n} \sum_{j=s}^{n} \sum_{k} f_{k, i, j}^{(n)}(x, y)
$$

$f_{k, i, j}^{(n)}(x, y)=\frac{n!}{k!(i-k)!(j-k)!(n-i-j+k)!}(H(x, y))^{k}$

$$
\times(F(x)-H(x, y))^{i-k}(G(y)-H(x, y))^{j-k}(\bar{H}(x, y))^{n-i-j+k}
$$

$$
K_{r, s}^{(n)}(x, y)=\sum_{i=r}^{n} \sum_{j=s}^{n} \sum_{k} f_{k, i, j}^{(n)}(x, y)=K_{r, s}^{(n)}(F, G, H)
$$

Positive quadrant dependence（PQD）：

$$
H(x, y) \geq F(x) G(y) \text { for all } x, y
$$

Negative quadrant dependence（NQD）：

$$
H(x, y) \leq F(x) G(y) \quad \text { for all } x, y
$$

Dependence Structure

Theorem 1.

For $1 \leq r, s \leq n$ ，the distribution $K_{r, s}^{(n)}$ is increasing in H ．
Proof：$\frac{\partial}{\partial H} K_{r, s}^{(n)}(x, y)=n f_{r-1, s-1}^{(n-1)}(x, y) \geq 0$ ．

Figure 1：$H_{2}-H_{1}$
Figure 2：$K_{2,3}^{(3)}\left(f, G, H_{2}\right)-K_{2,3}^{(3)}\left(f, G, H_{1}\right)$

Corollary 1.

For $1 \leq r, s \leq n$ ，the joint distribution of $\left(X_{r, n}, Y_{s, n}\right), K_{r, s}^{(n)}$ ，is PQD if H is PQD，and is NQD if H is NQD．

Theoretical Applications

Baker＇s（2008）distribution：

$$
\begin{aligned}
& H_{R}^{(n)}(x, y)=\sum_{r=1}^{n} \sum_{s=1}^{n} r_{r s} F_{r, n}(x) G_{s, n}(y), \sum_{r=1}^{n} r_{s r}=\sum_{s=1}^{n} r_{s r}=\frac{1}{n}, r_{s r} \geq 0 . \\
& H_{+}^{(n)}(x, y)=\frac{1}{n} \sum_{r=1}^{n} F_{r, n}(x) G_{r, n}(y) ; H_{-}^{(n)}(x, y)=\frac{1}{n} \sum_{r=1}^{n} F_{r, n}(x) G_{n-r+1, n}(y) .
\end{aligned}
$$

Bairamov and Bayramoglu＇s（2013）distribution：
$K_{R}^{(n)}(x, y)=\sum_{r=1}^{n} \sum_{s=1}^{n} r_{r s} \operatorname{Pr}\left(X_{r, n} \leq x, Y_{s, n} \leq y\right), \sum_{r=1}^{n} r_{s r}=\sum_{s=1}^{n} r_{s r}=\frac{1}{n}, r_{s r} \geq 0$.
$K_{+}^{(n)}(x, y)=\frac{1}{n} \sum_{r=1}^{n} \operatorname{Pr}\left(X_{r, n} \leq x, Y_{r, n} \leq y\right), K_{-}^{(n)}(x, y)=\frac{1}{n} \sum_{r=1}^{n} \operatorname{Pr}\left(X_{r, n} \leq x, Y_{n-r+1, n} \leq y\right)$,

Theorem 2.

（i）For $n \geq 1, K_{+}^{(n)} \geq H_{+}^{(n)}$ or $K_{+}^{(n)} \leq H_{+}^{(n)}$ depending on H is PQD or NQD．
（ii）For $n \geq 1, K_{-}^{(n)} \geq H_{-}^{(n)}$ or $K_{-}^{(n)} \leq H_{-}^{(n)}$ depending on H is PQD or NQD．
Monotonicity of $K_{+}^{(n)}(x, y)$
Fact：As $n \rightarrow \infty, H_{+}^{(n)}(x, y) \rightarrow \min \{F(x), G(y)\} \quad$（Dou et al．2013）
Problem：As $n \rightarrow \infty, H_{+}^{(n)}(x, y) \rightarrow \min \{F(x), G(y)\}$ monotonically in－ creases in n ？
Theorem 3．（i）For $n \geq 2$ ，the distribution $K_{+}^{(n)}$ is of the form
$K_{+}^{(n)}=H+\frac{1}{n} \sum \sum_{i+j \leq n} \min \{i, j\}\binom{n}{i, j, n-i-j}(F-H)^{i}(G-H)^{j}(H+\bar{H})^{n-i-j}$. （ii）Let $W=(F-H)(G-H)$ and $V=H+\bar{H}$ ．Then

$$
K_{+}^{(n)}=H+\sum_{m=2}^{n} \frac{1}{m-1} \sum_{i=1}^{[m / 2]}\binom{m-1}{i, i-1, m-2 i} W^{i} V^{m-2 i}, \quad n \geq 2
$$

where $[a]$ is the largest integer less than or equal to a ．Equivalently，

$$
K_{+}^{(n)}-K_{+}^{(n-1)}=\frac{1}{n-1} \sum_{i=1}^{[n / 2]}\binom{n-1}{i, i-1, n-2 i} W^{i} V^{n-2 i} \geq 0, \quad n \geq 2
$$

References

－Bairamov，I．and Bayramoglu，K．（2013）．From the Huang－Kotz FGM distribution to Baker＇s bivariate distribution，Journal of Multivariate Analysis，113，106－115．
－Baker，R．（2008）．An order－statistics－based method for constructing multivariate distri－ butions with fixed marginals，Journal of Multivariate Analysis，99，2312－2327．
－Dou，X．，Kuriki，S．，Lin，G．D．（2013）．Dependence structures and asymptotic proper－ ties of Baker＇s distributions with fixed marginals，Journal of Statistical Planning and Inference，143，1343－1354．

