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/Introduction

) Many of ensemble-based data assimilation algorithm are based on a
Monte Carlo representation which would provides accurate estimates

with infinite particles.

) In data assimilation for high-dimensional systems, however, the number
of particles 1s limited by computational resources. The ensemble size 1s

typically much smaller than the state dimension.

) If the ensemble size N is smaller than the rank of the state covariance
matrix, the ensemble would form a simplex in an (N-1)-dimensional
subspace. Therefore, we can consider a spherical simplex representation
[Wang et al., 2004] on the basis of a different principle from a Monte

Carlo representation.

Monte Carlo representation Simplex representation

Simplex representation

We can represent the mean vector @y, and the covariance matrix Vi, by using a set

(1) (V)

of particles {x M T } which satisfies the following two equations:
1 M 1M |
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If N > rankVy, + 1, we can obtain the ensemble satistying the above two equations.
(We do not need to rely on the law of large numbers.)

In the typical case that NV < rankVy + 1, the ensemble provides a reduced-rank
approximation of the covariance matrix.

The third and higher order moments of the probability density function (PDF) are
ignored. However, in the ensemble Kalman filters or the ensemble square-root filters, it
does not matter.

If we define a matrix Xg; as

L (2) (V)
Kilk = VN (wk\k — LTrlk Lrp — ek T T wk\’ﬂ) )

the covariance matrix can be decomposed as Vi, = X ka‘ "
If we assume x;, follows a Gaussian distribution N (:Bk‘ ks Xk‘ka‘ .); T can be associ-
ated with a low-dimensional vector of latent variables, z as follows:

Ti|Y1g ~ Thje + KipZk, (Zk ~ N(z; 0, I))

The uncertanty of the high-dimensional vector @ can thus be associated with that of
the low-dimensional vector zp.

In the generative model xy|y,.. ~ Xk + X2k, €ach particle aeif‘)k can be generated

when each z® is set as
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This indicates that all of the particles @ Kk o Tk have the same probability density.

Ensemble transform Kalman filter

The ensemble transform Kalman filter [Bishop et al., 2001] obtains the mean of the
filtered distribution according to the Kalman filter algorithm:

Ty = Tije—1 + Ki (yr — kak\k—l)

The square root of the covariance matrix is calculated by Xk‘ p = Xilk—1 Tk

If we consider the eigenvalue decomposition of the following N x N small-sized matrix:
Xpip_1Hi Ry tHiX -1 = UAUT,
the matrices Ki and T, can be obtained as follows:
Ki = Xpe1U(T+ A)THUIXE, HER,
Tp = U+ A)2U7.
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Prediction with a small ensemble

For both the representations, if we apply the dynamical system model for
cach particle:
w/(;|)k:—1 = M@l(iuk—l)v

we obtain an ensemble representing the forecast distribution p(x |y,).

The Monte Carlo representation would converge to the exact solution of

the Chapman-Kolmogorov integral with the infinite ensemble size.

The simplex representation provides an estimate with second-order
accuracy for the first and second moments of the solution of the

Chapman-Kolmogorov integral.

(x| Yisst) (x| Yissr)

p(x,_, | Vi) p(x, | Vii1)

Monte Carlo representation Simplex representation

Even if the system dynamics is deterministic and fully known, a forecast
with a limited-sized ensemble may have some errors due to the

nonlinearity of the dynamical system of higher order than second.

Covariance. inflation

) If the number of particles is limited, the ensemble mean can deviate from
the exact forecast mean.
) The inflation of the covariance matrix is widely used to avoid this

problem.

Exact forecast distribution /

Gaussian with a forecast error

Exact forecast distribution /

)

The following rough argument would suggest that the discrepancy from the exact
forecast can be reduced by inflating the covariance.

) We want to attain the Gaussian forecast distribution, N (wk|k_1,Vk|k_1)7 where
xpk—1 and Vi1 are the exact mean vector and the exact covariance matrix, re-
spectively.

) We estimate the forecast distribution as a Gaussian N (ik|k_1,042\_/k|k_1)7 where
Ty k—1 and \_/k| 1 are the sample mean and the sample covariance of the forecast
ensemble.

) The cross entropy

- /N(mk|klavk|k1) 1OgN(mk|k—1aa2Vk|k—1) dx

1s minimized when

—1 \/ — \ / — e —
o = djmmktr [Vklllf—lv’f%—l T Vk|k—1(mk|k—1 — Tppp1) (Tppe-1 — mk|k—1)T} :

JIUE [V,ﬁ_l} =V

E[OJQ] =1+ mtf [V&i_l(wmk_l — mk|k_1)(ik|k_1 — .’.Uk|k_1)T} > 1.
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