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Summary

The question of how much information can be theoretically gained from variable neuronal firing 
rate is investigated. We employ the statistical concept of information based on the Kullback-Leibler 
divergence, which is the key quantity for understanding the neural rate code. 

✓ For rate-modulated renewal processes, the minimum information gain is derived, which 
is attained if and only if the ISI distribution is given by the gamma distribution. 

✓ We give an explicit interpretation of the KL divergence in terms of detectability of 
rate variation: the lower bound of detectable rate variation, below which the temporal 
variation of firing rate is undetectable with a Bayesian decoder, is entirely determined 
by the KL divergence.

Neural Coding Problem

λ(t) λ̂(t)
underlying rate neuron spikes decode rate estimate
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We assume that the firing rate carries a significant portion of the neural information. 

• How much information about       do spike trains carry?

• How well can the underlying rate       be estimated from observed spike trains?

λ(t)

λ(t)

✓ The information gained from spike trains recored from a cortical area is estimated to 
be about 0.1 bits/spikes, with which roughly 4 and more trials are necessary to detect 
the underlying rate variations. 

1.   Spike Train Model

Rescaled renewal process:

By applying the time-rescaling transformation:

where

in the interval [0,T] is obtained as

where is the density of the first spike occurring at      and
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2.   Kullback-Leibler Divergence

✓ The KL divergence increases as CV is decreased.

✓ The KL divergence increases as        is increased.σ/µ

Minimum KL Divergence with respect to f(x)

For a given rate process       , the minimum the KL divergence is given by
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where 
      is the coefficient of variation of f(x). Moreover, this minimum KL divergence is 
attained if and only if f(x) is the gamma distribution.

σ, τ are the amplitude and characteristic timescale of λ(t), respectively, and
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In order to quantify the information about the rate variation, 

we introduce the Kullback-Leibler (KL) divergence:
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Note that the KL divergence is a functional of        and        .λ(t) f(x)

✓ The KL divergence significantly depends on the dispersion property of firing, which is 
described by f(x). Particularly, it attains the minimum for f(x) being the gamma distribution.

p({λ(t)}|{ti}, γ) =
p({ti}|{λ(t)})p({λ(t)}|γ)

p({ti}|γ)

3.   Bayesian Decoding

We choose the prior distribution of the firing rate such that the large gradient of        is 
penalized with 

where the hyperparameter    controls the roughness of the time-dependent rate       ;  with 
small value of    , the model requires the constant firing rate and vice versa.
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The optimal hyperparameter    is determined by maximizing the marginal likelihood: γ

The posterior probability of the firing rate        given the spike trains        is obtained by the Bayes’ 
theorem as
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For instance, if a spike is, on average, expected to be observed in the characteristic timescale of 
the rate variation, it is necessary for the spike train to carry more than 0.25 nats (=0.36 bits) per 
spike information so that the underlying rate variation is detectable.
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Detectability of Rate variation

The underlying rate variation is detectable if

where is the correlation function of λ(t).φ(u) = �(λ(t) − µ)(λ(t + u) − µ)�
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We analyzed the biological spike data recorded from 216 neurons in the visual cortical area MT of 
three adult rhesus macaques, which is publicly available from Neural Signal Archive (http://
www.neuralsignal.org).  The experimental details are found in Britten et al. (1992).

Method:
Let {tj1, . . . , tjnj

}N
j=1 be N identical and independent trials in the interval [0,T].

1) Estimate the firing rate        from                          using a 
kernel density estimator (Shimazaki, 2010).

λ̂(t) {tj1, . . . , tjnj
}N

j=1
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2) Apply the time-rescaling transformation 

to obtain the rescaled ISIs {xj
2, . . . , x

j
nj
}N

j=1.

3) Compute the CV from the rescaled ISIs.

4) Compute the lower bound of KL divergence by Eq.(1).

Result:

4.   Data Analysis

� tj
i

tj
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i = λ̂(t)dt

Thus, roughly 4 and more trials are necessary to detect the underlying rate variation.

• The estimated (lower bound of) KL divergence was ≈0.1 bits/spike on average.

• The minimum information given by the r.h.s of Eq. (2), which is required for detecting the 
underlying rate variation, was estimated ≈0.4 bits/spike.  

We analyzed 1,064 datasets that contained trials ≧10 and ISIs ≧1,000.

where the integration over the path space can be computed by the path integral method.
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