田口の精密累積法の再評価と修正

椿 広計 データ科学研究系・リスク解析戦略研究センター・サービス科学研究センター 教授

【田口(1962)「新版実験計画法」、丸善の精密累積データと精密累積法】: すべてのデータは座標変数(∞因子、座標因子)上で、0-1表現することが可能

田口(1962)の寿命試験データ

20サイクルに記載されているA1の3件、A2の1件は、

右側打ち切りデータと見なす

要因Aは2種類のマグネットワイヤー

サイクル
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

A1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

A1はポリエチレン被覆、A2はシリコン被覆

サイクル: w因子(21水準として仮に扱っている)

Box, Bisgard and Fung(1988)の精密累積法批判

[Lindsay(1997)@Parametric Multiplicative Intensity Model]:

Poisson Model適用のための修正精密累積データ

修正精密累積法というべき一般化線形モデリングの萌芽

一連の0,1データが平均 λ_k のポアソン分布に独立に従うと仮定第m単位時刻($m \le K$)に事象が生起し、精密累積データが1

 \Rightarrow 尤度関数: $\exp(-\sum_{k=1,...,m-1} \lambda_i)$ ($\Pi_{k=m,...,K} \lambda_k$) $\exp(-\sum_{k=m,...,\underline{K}} \lambda_i)$ 分布のハザード関数: $\lambda(t)$,累積ハザード関数 $\Lambda(t)$ とすれば,

上記尤度関数は $\lambda(t_m)\exp(-\Lambda(t_m))$ の離散近似. 右側打ち切りデータは、打ち切り単位時刻を0とすれば良い $\Rightarrow \exp(-\Lambda(t_m))$ の離散近似

n個の修正精密累積データ C_{it} 、と各時点に依存する共変量 \mathbf{x}_i からなるデータ $(C_{it}, \mathbf{x}_{it}), i=1,...,n, t=1,...,t_i$ に対する

近似統計モデルは、 C_{it} が、期待値 $E[C_{it}|\mathbf{x}_{it}] = \mu_{it}$ のポアソン分布に従うとして,Lindayは, $\log \mu_{it} = \lambda(t) + \mathbf{x}_{it}^{\mathsf{T}}\mathbf{\beta}$ と表現し, $\lambda(t)$ にt や $\log t$ に関する多項式モデルを当てはめた一般化線形モデル(PMIM)を提唱(tの一次式モデルならばグンベル分布モデル, $\log t$ の一次式ならばワイブル分布モデルに対応).

修正精密累積データ行列 (一部表示)

【修正精密累積法:田口(1962)の原思想を再評価し、PMIMを拡張】:

PMIMの3つの拡張:: ① $\lambda(t)$ をK-1水準の要因として分析、あるいはスプライン回帰を用い一般化加法モデルで分析

②時間と要因効果との交互作用を検討,③ 分割法(Multilevel Model)としての解析(現時点で未検討)

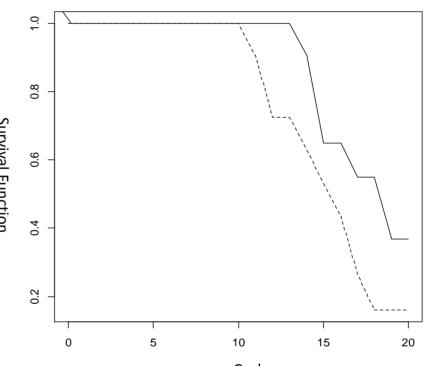
修正精密累積法1:田口(1962)データへの単純分散分析モデル適用: $\log \mu_{it} = \mu + t_i + a_j + (t \times a)_{ij}$ i=1,...,21, j=1,2

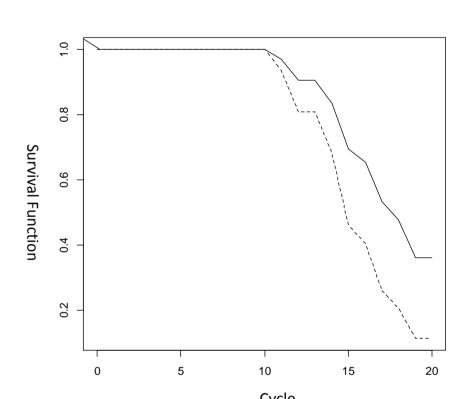
修正精密累積法2: PMIMの $\lambda(t)$ をノンパラメトリック項とした一般化加法モデル(GAM)の適用

【田口(1962)の再解析】

修正精密累積法1のANODEV(Analysis of Deviance)

	Df D	<u>eviance Resid.</u>	Df	Resid. Dev AIC
NULL			345	98. 363 132. 363
factor (cycle)	20	43. 926	325	54. 437 128. 437
A	1	2. 171	324	52. 265 <i>128. 265</i>
factor(cycle):factor(A)	20	8. 345	304	<u>43. 920 159. 920</u>





Lindsay (1997)のPMIM: log(Cycle+0.5)の多項式モデル当てはめのANODEV

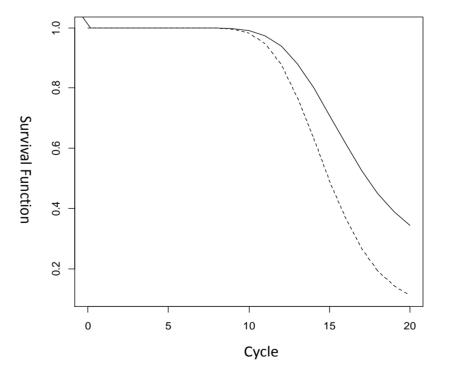
	Df De	<u>eviance Resid.</u>	Df	Resid. De	v AIC
NULL			345	98. 363	132. 363
log(cycle + 0.5)	1	31. 788	344	66. 575	102. 575
$I(log(cycle + 0.5)^2)$	1	3. 569	343	63.006	101.006
A	1	2. 024	342	60. 982	<u> 100. 982</u>
A * log(cycle + 0.5)	1	0. 861	341	60. 121	102. 121
$A * log(cycle + 0.5)^2$	1	0. 910	340	59. 211	103. 211
	3				

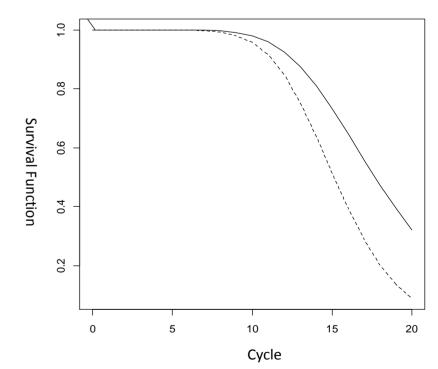
修正精密累積法1:含交互作用 の推定生存関数

修正精密累積法1:主効果 の推定生存関数

<u>最小AIC PMIMの最尤推定量</u>

	Estimate	Std. Error	z value	Pr (> z)
(Intercept)	-93. 8375	58. 8546	-1. 594	0. 111
log(cycle + 0.5)	63. 7459	43. 3832	1.469	0. 142
$log(cycle + 0.5)^2$	-11. 0450	7. 9782	-1. 384	0. 166
Α	0. 7221	0. 5100	1. 416	0. 157





修正精密累積法2の当てはめ結果: $\log \mu_{it} = \mu + \lambda (\log(t+0.5)) + a_i$

	Estimate	Std.	Error	z value	Pr (> z)	<i>,</i>
(Intercept)	-8. 2616	4	. 0093	-2. 061	0.0393	
Α	0. 7595	0	. 5113	1. 486	0. 1374	
		edf	Ref. df	Chi.sq	p-value	
s(log(cycle	+ 0.5)) 1.	748	2. 188	3.341	0. 212	AIC=101.395

Min AIC PMIMの推定生存関数

修正精密累積法2:主効果 の推定生存関数

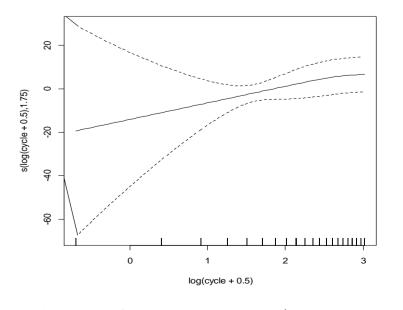
藤田(1998)は地震生起間隔分布に対して修正精密累積法2を適用し、様々な知見を得ている. 【参考文献】

Box, G. E. P., Bisgaard, S. and Fung, C., (1988) An explanation and critique of Taguchi's contributions to quality engineering, *Quality and Reliability Engineering International*, 4, 123-131

Lindsay, J. K. (1997) Parametric multiplicative intensities models fitted to bus motor failure data, *Applied Statistics*, 46(2), 245-252.

田口玄一(1962) 32.2 精密累積法,新版実験計画法下,丸善.

藤田正彦(1998)寿命分布における故障率関数の推定一地震生起間隔への適用, 慶應義塾大学理工学部数理科学科椿研卒業論文



修正精密累積法2ハザード関数 (ノンパラメトリック項)の推定 横軸のノッチがサイクルに相当