統計基礎研究系

多変量尺度混合分布の漸近展開

清 水 良 一

分布 G に従う p 次元確率ベクトル X の尺度混合 $Y = \Sigma^{-1/2}X$ の分布関数 F(x) を G(x) の周りで展開する問題を考える。ただし, Σ は X と独立で,単位行列 I_p の近傍で変動する確率行列であるとする。G の確率密度関数を g(x) とし,簡単の為に k は 2 またはそれより大きい整数とし,F(x) を

$$G_k(x) = G(x) + \sum_{j=1}^{k-1} \cdots g(x)$$

という形の関数で近似する:

$$(*) F(x) = G_k(x) + \Delta_k(x).$$

問題は…の部分の決定と誤差項 $\Delta_k(x)$ の評価である。 $\sup |\Delta_k(x)|$ については若干の結果があるが、ここでは (*) を微分した $f(x)=g_k(x)+\delta_k(x)$ について

$$\Delta_k \equiv \int_{pp} |\delta_k(x)| dx$$

を評価したい。特別の場合として $\Sigma = \operatorname{diag}(\sigma_1^2, \sigma_2^2, ..., \sigma_r^2)$ で,G が標準正規分布の直積,あるいはガンマ分布(特に指数分布)の直積のとき,この評価は具体的に可能である。例えば,G が正規分布の場合には

$$g_{k}(x) = \sum_{j=0}^{k-1} \frac{1}{2^{j} j!} \sum_{j=1}^{k} \binom{j}{j_{1}, j_{2}, \dots, j_{p}} \prod_{u=1}^{p} H_{2j_{u}}(x_{u}) (\sigma_{u}^{2} - 1)^{j_{u}} \cdot \phi(x)$$

$$\Delta_{k} \leq \frac{1}{2^{k} p!} \sum_{j=1}^{k} \binom{k}{k_{2}, \dots, k_{p}} \prod_{u=1}^{p} \alpha_{k_{u}} (\sigma_{u}^{2} \vee \sigma_{u}^{-2} - 1)^{k_{u}}$$

である. ただし, H はエルミート多項式, $\alpha_k(k \ge 1)$ は k だけで決まる正の数で, 特に $\alpha_1 \le 0.28$, $\alpha_2 \le 0.26$, $\alpha_3 \le 0.25$, $\alpha_4 \le 0.16$ である. また, $k_u = 0$ のとき $\alpha_{k_u} = 1.26 \cdot (\sigma_u^2 \lor \sigma_u^{-2})$ と置き換える.

また、 G が指数分布の場合は

$$g_{k}(x) = \sum_{j=0}^{k-1} \frac{1}{2^{j} j!} \sum \left(j_{1, j_{2}, ..., j_{p}} \right) \prod_{u=1}^{p} L_{j_{u}}(x_{u}) (\sigma_{u} - 1)^{j_{u}} \cdot g(x)$$

$$\Delta_{k} \leq \frac{1}{k!} \sum \left(k_{1, k_{2}, ..., k_{p}} \right) \prod_{u=1}^{p} \beta_{k_{u}} (\sigma_{u} \vee \sigma_{u}^{-1} - 1)^{k_{u}}$$

となる。ただし、L はラゲール多項式、 β_k はk だけで決まる正の数で、特に $\beta_1 \le 0.71$ 、 $\beta_2 \le 0.82$ 、 $\beta_3 \le 1.01$ 、 $\beta_4 \le 1.22$ 、 $\beta_5 \le 1.48$ 、 $\beta_6 \le 1.53$ である。 $k_u = 0$ のとき、 $\beta_{ku} = (\sigma_u \vee \sigma_u^{-1})$ と置き換える。

フィッシャーのナイル河問題について

平 野 勝 臣

R.A. Fisher のナイル河問題の主旨は『ナイル河流域の農地の肥沃度は洪水の際の水位で決定される。洪水後の農地の再配分を,前もってわかっている割合で,水位に依存せずに行うにはどうするか』である(Fisher (1956), p. 118 参照)。

この問題に対する彼の与えた一つの例は以下の通り (Fisher (1956), pp. 163-169 参照). 2 次元確率密度関数 $f(x,y)=\exp\{-\theta x-\theta^{-1}y\}$ から n 個の標本をとる、 $T=\sqrt{\overline{Y}/\overline{X}},\ U=\sqrt{\overline{X}~\overline{Y}}$ とする、 日数 θ の