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1 Generalized t statistic

For a binary class label y € {0,1}, let {xg; : ¢ =1,...,ng} be a sample with
y=0and {zy;: j=1,...,n1} beasample with y = 1, where n = ng+nj.
Then we propose a generalized t-statistic defined by
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where U 1s an arbitrary real-valued function: R — R; 7, and Sy are the
sample mean and the sample variance given y, respectively. The expectation

of Li7(B) is defined by
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where Ey, uy and 2y, denote the conditional expectation, mean and variance,

respectively, given y. For the distribution of the control group (y = 0), we
assume normality such as

Ly(8) = B [U{

zo ~ N(pp, Xo)- (3)

That is, the information of O-group population is assumed to be simply re-
duced to the statistics g and Sp; while we carefully have to choose U to
extract the information of 1-group population. In the cancer data analysis
based on the gene expression data, a small part observations of disease group
(y = 1) is usually over- or down-expressed. To treat this heterogeneity, sev-
cral types of t-statistics are proposed to individually detect genes that are
useful in cancer studies (Tibshirani and Hastie, 2007; Wu, 2007; Lian, 2008).
[f we adopt a linear function U(w) = w, then the generalized t-statistic

becomes the simple t-statistic standardized by Sp:
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When U is the cumulative function of the standard normal distribution:
U(w) = ®(w), the generalized t-statistic is viewed as c-statistic (area under

the ROC curve) because of the normality assumption of O-group population
in (3):
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which converges to pr(flzy < 81z;) as ng and ny go to infinity by a con-
ditional expectation argument (Su and Liu, 1993). Hence, the generalized
t-statistic is a natural extension of the common statistics such as t-statistic
and c-statistic. Moreover, there is some relationship with Fisher linear dis-
criminant function if we choose a specific quadratic function as U, which is
discussed in detail later.

2 Asymptotic consistency and normality

Let us consider the estimator associated with the generalized t-statistic as

By = argmax Li;(3). (6)
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Then we consider the following assumption:
(A) Fi(g|lw=a)=0 forallaecR,
where w = ﬁg(:c — o), 9 = (I — Py)(x — po) with I being the p X p unit

matrix and Py = Zoﬁoﬁg . where
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Theorem 2.1 Under Assumption (A), EU 18 asymptotically consistent
with By for any U.

Next we consider the following assumption in addition to (A):
(B) vari(g |w=a) =% forall a € R,

where vary, denotes the conditional variance of x given y and X5 = (I —
Py)So(I — Fy).

Theorem 2.2 Under Assumptions (A) and (B), ’n&/Q(EU—BO) IS asymp-

totically distributed as N (0, Xg7), where
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in which my = pr(y = 0), m = pr(y = 1), S(w) = dlog f1(w)/Ow and U’
denotes the first deriwative of U.

Theorem 2.3 The optimal U function under Assumptions (A) and (B)
has the following form:

fi(w)
¢(w7 :u’UM 0-120>7

Uopt(w> = log (10)

where wy = FE(w) and o2, = var(w). Moreover, the minimum of cgr is
given by

2
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where 1y, = Ey(w), 07, = Et{(w — p1,4)*} and py g2 = Ey{S(w)?}.

Remark 2.1 The expectation of generalized t-statistic based on Ugpt 1S
equivalent to the Kullback-Leibler divergence given as:

fi(w)

w,,uw, O’%U)

Ly (8) = [ filw)log y du. 12

That s, the mazrimization of the generalized t-statistic i1s considered as
the maximization of the Kullback-Leibler divergence.

Figl. Contour plots of probability densities of y = 0 in gray and y = 1 in black, which
satisfy Assumptions (A) and (B).
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