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Motivation

Construction of the generative model

Abstract

In many cortical areas neural spike trains are non-Poisson (Shinomoto et al., 2009). 
Here, we investigate a possible benefit of non-Poisson spiking for information 
transmission by studying the minimal rate fluctuation that can be detected by a 
downstream optimal observer, i.e., a Bayesian estimator. The idea is that an 
inhomogeneous Poisson process may make it difficult for downstream decoders to 
resolve subtle changes in rate fluctuation, but by using a more regular non-Poisson 
process the nervous system can make rate fluctuations easier to detect and, therefore, 
more informative. We evaluate the degree to which regular firing reduces the rate 
fluctuation detection threshold. We find that the threshold for detection is reduced as 
the coefficient of variation of interspike intervals increases.

Empirical Bayes decoding

The path integral method

Results

• Neurons in cortical areas exhibit stable firing patterns that can be characterized in 
terms of “local variation (LV)” of interspike intervals(ISIs).  

• There is a strong correlation between the type of signaling pattern exhibited by 
neurons in a given area and the function of that area. 

Inference problem

Ii : i-th ISIs.

Shinomoto et al., PLoS Computational Biology (2009) 5:e1000433. 

Given a sequence of events {t1, t2, ..., tn}, infer the firing rate        and regularity   .λ(t) κ

i) ISI distribution: gamma distribution
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ii) Firing rate
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By applying the time-rescaling transformation, 

the probability density of {t1, t2, ..., tn} is obtained as 

t1 t2

Λ(t2)Λ(t1)

· · ·

The inverse probability of the firing rate        given the spike train {t1, t2, ..., tn} is 
obtained according to the Bayes’ rule

λ(t)

We choose the prior distribution of the firing rate such that the large gradient 
of        is penalized with λ(t)

where the hyperparameter    controls the flatness of the time-dependent rate       ;  
with small value of    , the model requires the flat firing rate and vice versa.

λ(t)γ
γ

The optimal hyperparameters    and    are determined by maximizing the marginal 
likelihood defined by

γ κ

Two interpretations for a given spike sequence

“regularly derived from a 
fluctuating rate”

“irregularly derived from a 
constant rate”

log pκ,γ({ti})

Example 1 : Sinusoidally modulated rate

Critical points : κσ2τ/µ = 2

By decomposing the firing rate into the mean    and fluctuation       , µ x(t)

the marginal likelihood can be factorized as 

where

: likelihood of the gamma distribution

: contribution of the 
rate fluctuation

with the Lagrangian

Semiclassical approximation (infinite dimensional Laplace approximation)

Let        be the MAP path that satisfies the Euler-Lagrange equationx̂(t)

By approximating the action integral to the range of quadratic, the path integral can 
be performed analytically as 

where R represents the “quantum” contribution of the quadratic derivation to the 
path integral:

The ratio of determinants can be computed in the standard way (i.e., Gelfand-
Yaglom formula).

First-order phase transition

Example 2 : OUP modulated rate

dλ

dt
= −λ− µ

τ
+ σ

�
2
τ

ξ(t)

Second-order phase transition

Critical points : 

where

Goal: 

Path integral representation of the marginal likelihood 
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Information transmission using non-Poisson regular firing
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