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Information transmission using non—Poisson regular firing
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Abstract The path integral method

In many cortical areas neural spike trains are non-Poisson (Shinomoto et al., 2009). Path integral representation of the marginal likelihood
Here, we investigate a possible benefit of non-Poisson spiking for information

transmission by studying the minimal rate fluctuation that can be detected by a
downstream optimal observer, i.e., a Bayesian estimator.The idea is that an At) = p+ x(t)
inhomogeneous Poisson process may make it difficult for downstream decoders to
resolve subtle changes in rate fluctuation, but by using a more regular non-Poisson
process the nervous system can make rate fluctuations easier to detect and, therefore, Pe~({ti}) = eL(m) . F(K,7)
more informative.We evaluate the degree to which regular firing reduces the rate

By decomposing the firing rate into the mean y and fluctuation z(?),

the marginal likelihood can be factorized as

h
fluctuation detection threshold.We find that the threshold for detection is reduced as v ereﬁ(ﬁ)
the coefficient of variation of interspike intervals increases. € = H Gamma(t; — ti—1|p, k) :likelihood of the gamma distribution
1 g : contribution of the
= —— [ D{z(t — L(z,x)dt '
i Motivation ) Fr,7) Z () / tz(t)} exp /0 (&) rate fluctuation

with the Lagrangian
* Neurons in cortical areas exhibit stable firing patterns that can be characterized in srans

terms of “local variation (LV)” of interspike intervals(ISls). L(i,x) = Lw + ka(t) — HZ 5(t —t;)log (1 4+ ﬂ)
* There is a strong correlation between the type of signaling pattern exhibited by 272 M
neurons in a given area and the function of that area.

Semiclassical approximation (infinite dimensional Laplace approximation)
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vk = Z <1 (L + I¢+1)2> <1 i I+ Iy )’ [i - i-th Bls. Let Z(t) be the MAP path that satisfies the Euler-Lagrange equation
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Shinomoto et al., PLoS Computational Biology (2009) 5:e1000433.
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where R represents the “quantum” contribution of the quadratic derivation to the
- N path integral:
Inference problem

1
p_ 1 det(— 02 +422L)] 7
~ \/2m2T det ( — 82)
Goal:
Given a sequence of events {ti, 1, ..., 1n}, infer the firing rate \(¢) and regularity «. The ratio of determinants can be computed in the standard way (i.e., Gelfand-
Yaglom formula).
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Construction of the generative model
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i) ISI dlstrlbutlon'gamma distribution
o Results
ful@) = K(rz)" e [T (k)
where = Example | :Sinusoidally modulated rate  A\(¢) = 4+ osint/
/Ow:cf,{(:v)d:v _, g ple I : y = pu+osint/T
k=1/C% = B(X)?/Var(X) Two interpretations for a given spike sequence
oo o e " 1ngﬁ’,y({ti}) a(t) (%)
) Firing rate \L \ 4| “regularly derived from a
=k { Z o(t — tz)} CM/ > o " fluctuating rate”

By applying the time-rescaling transformation,

,,,,, \ “irregularly derived from a
- constant rate”

A(t;) = / A(t)dt, @ .\
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the probability density of {#i, 1, ..., #,.} is obtained as 4
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Empirical Bayes decoding \ _U_\/\
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The inverse probability of the firing rate \(¢) given the spike train {t1, 1, ..., ta} is — L |

obtained according to the Bayes’ rule | 10

P (V1)) = P ({ti }[{A() )Py ({A)}) ) %

pﬁ:ﬁ({ti}> . IK 45 1' 16° 10'4?162 10

marginal
likelihood

We choose the prior distribution of the firing rate such that the large gradient First-order phase transition Critical points : ko271 = 2
of \(t) is penalized with '
1 1 g Example 2 : OUP modulated rate
PO = e (= oo [ (@v/aea ) ple 2.
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where the hyperparameter 7 controls the flatness of the time-dependent rate \(¢); nw oL T ;£< ) \ B
P 0

with small value of 7, the model requires the flat firing rate and vice versa.

Second-order phase transition

Critical points : ko7 /j = 1/2 : \\\

The optimal hyperparameters 7 and k are determined by maximizing the marginal
likelihood defined by

Pry(1ti}) = /D{A(t)}pm({ti}I{A(t)})pw({k(t)})-
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