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1 Multiresolution Analysis (フラクタルと同
様)

Wavelets + Neural Networks → NeuroWavelet

• fractals: natural basis for financial time series (Mandelbrot)

•Wavelet Transform resembles fractals in that it operates on multiple time
scales

• early examples of fusing neural networks with wavelets can be found in
papers by Murtagh et al.

A NeuroWavelet architecture: artificial neural networks are
optimised by a genetic algorithm
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• financial time series sampled discretely once every 1,000 ticks

• need to “stabilise” the samples in order to reduce non-stationarity and deal
with changing volatility

• an exponential distribution f (x, λ) = λ exp−λx, x ≥ 0 is fitted to absolute
values of logarithmic returns, parametrised by λ set to a reciprocal of the
exponential moving average of absolute returns

• a discrete Biorthogonal Spline wavelet transform is applied to a window
containing 32 samples of past volatility-adjusted financial returns x(t) for
the EUR/USD exchange rate

• extracted wavelet coefficients are passed as inputs to a small neural net-
work, which is trained with genetic algorithms to output trading signals
y ∈ (−1,+1)

• need to prune weights in order to prevent excessive over-fitting (fitting past
data too closely without learning how to generalise knowledge to handle
new unseen cases), which is a common problem in financial time series
prediction

Absolute values of logarithmic returns approximated with the
Exponential Distribution
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3 weight prunning (regularisation)

• bias units are removed from all neurons to enforce y(−x) = −y(x) (prevent
over-fitting long one-sided bull or bear market phases)

• filtering of wavelet coefficients (which form an input space for neural
networks) to remove spurious noise, achieved by minimising the sum-of-
squares of input neuron weights

•maximisation of the separation of discovered input features (wavelet coeffi-
cients), achieved by imposing an orthonormalisation constraint on weights
of input neurons (forcing input features to be uncorrelated)

4 Experimental results (OpenCLによるGPGPU)
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EURUSD, NeuroWavelet GA optimisation, (WITH BIASES, NO REGULARISATION)

best chromosome (in-sample)
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Table 1: Simulation results: no regularisation (left chart), compared with regularisation (right chart). Unseen test set performance marked in green.


