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1 Introduction

We develop a dynamic brand choice model incorporating consumer hetero-
geneity and market dynamics based on the state space model (Figure 1).
Then we apply the proposed model to scanner panel data to capture market
trend and to predict consumer behavior.
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Figure 1: State Space Model

2 Model

The proposed model can be considered within the framework of the state
space model. We use the multinomial logit model as an observation model to
represent how consumers make brand choice decisions, and represent mech-
anism of parameter changes in a system model. We model the probability
that household k purchase brand i at time t, given category purchase, as
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ik = 1) =

exp(Xt
ikβ

t
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t
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t
k + ηkI{stk = i})

, (1)

where Xt
ik is a row vector of explanatory variables for brand i of household k

at time t, βtk is an m dimensional column vector that consists of state vector

and time-invariant parameters, and stk ∈ {1, . . . , I} indicates the household
k’s purchased brand at the previous purchase occasion. Next, we model the
individual heterogeneity of βtk as

βtk = Ψt + ΦZk, (2)

where Ψt is an m dimensional state vector, Zk is an l dimensional column
vector of household specific variables for household k, and Φ is an m × l
time-invariant parameter matrix to be estimated. Likewise, we formulate ηk
as

ηk = γ + ΥZk, (3)

where γ is a parameter and Υ is an l dimensional parameter vector. Note
that γ and Υ are both time-invariant. Finally, we model the system model
that represents the dynamic change of the state vector, Ψt, as

Ψt = Ψt−1 + Ξt, Ξt ∼ N(0,Σ), (4)

where Σ is a variance-covariance matrix of Ξ. That is, the system equation
simply follows the random walk model.

3 Empirical Analysis

3.1 Data

To estimate the proposed model, we use scanner panel data recorded at a
super market in Japan. The product category is instant coffee and the length
of the data period is three years (1,067 business days) from the beginning of
2000 to the end of 2002.

3.2 Variable Specification

We use the following information for the explanatory variables and household
specific variables in the proposed model.

Explanatory Variables: Xt
ik

• PRICEt
i : the minimum price per gram for brand i at time t (there are

several products of different size in the same brand)

•DISPLAY t
i : a binary variable indicating if at least one product of brand

i is displayed at time t

• FEATUREt
i : a binary variable indicating if at least one product of brand

i is featured at time t

Household Specific Variables: Zk

• SPENDk: three categories based on household k’s total purchase amount
in the category divided by total purchase volume in the data period

• FREQk: three categories based on household k’s total number of the
category purchase divided by business days in the data period

3.3 Analysis Design

To examine the effectivity of incorporation of consumer heterogeneity and
dynamic change in parameters, we compare the four models in Table 1.

Table 1: Comparative Models

w/o Heterogeneity w/ Heterogeneity

(Φ = 0,Υ = 0) (Φ ̸= 0,Υ ̸= 0)

w/o Dynamic Change
Model 1 Model 2

(Σ = 0)

w/ Dynamic Change
Model 3 Model 4

(Σ ̸= 0)

3.4 Results

Table 2 shows the log-likelihood of estimation and validation for each model.
The log-likelihood of validation was calculated by using the estimated coef-
ficients and smoothed distribution. From Table 2, we see that Model 4 best
fits the data in estimation; however, Model 3 best fits the data in validation.
This means that a model that considers only dynamic change in parameters
is the best for prediction.

Table 2: Comparison of Log-likelihood

Estimation Validation

Model 1 -4812.78 -5086.09

Model 2 -4765.37 -5102.80

Model 3 -4803.65 -5077.72

Model 4 -4754.06 -5100.23

Figure 2 shows the transition of promotion effects obtained from the smoothed
distribution. The time variation of price effect is relatively smaller than those
of display and feature. We also see that the display effect in the first half is
larger than those in the last half.
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Figure 2: Transition of Promotion Effects


