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1 U-divergence

Let U : R+ → R be a convex and strictly increasing function with the
derivative u and the inverse function ξ = u−1. Then for real-valued func-
tions f and g : Rp → R+, the U -divergence is given as a special case of the
Bregman divergence (?):

DU (g, f ) =

∫
d(ξ(g(x)), ξ(f (x)))dx, (1)

where

d(g′, f ′) = U(f ′)− {u(g′)(f ′ − g′) + U(g′)}. (2)

Note that DU (g, f ) is non-negative because of the convexity of U . The
equality holds if and only if f = g (a.e.x). It is also simply expressed as

DU (g, f ) = CU (g, f )−HU (g), (3)

where

CU (g, f ) = −
∫

g(x)ξ(f (x))dx +

∫
U(ξ(f (x)))dx (4)

HU (g) = −
∫

g(x)ξ(g(x))dx +

∫
U(ξ(g(x)))dx (= CU (g, g)), (5)

and CU (g, f ) and HU (g) are called the U -cross entropy and U -entropy, re-
spectively.

U-loss function with volume-mass-one

The U -loss function for observations D = {x1, . . . ,xn}, which derived from
the cross-entropy in (4), is defined as

LU (f ) = −1

n

n∑
i=1

ξ(f (xi)) +

∫
U(ξ(f (x)))dx. (6)

Then, we consider the following variant:

LU (f ) ≡ LU (u(U
−1(f ))) (7)

= −1

n

n∑
i=1

U−1(f (xi)) + 1 (8)

The point is that the second integral term in (6) is restricted to be 1, which

we call volume-mass-one. Here we consider U(t) = (1 + βt)(1+β)/β/(1 + β)
with β > 0.

2 Algorithm

1. Set f0(x) = 0.

2. For k = 1, . . . , K,

(a) Initialize π = π0 (≪ 1) , Σ = I and µ = argmin
µ∈D

{
Lβ

(
(1 − π)f

1+β
k−1 +

πϕ(µ, I)
)}

, where I is the p×p identity matrix; ϕ is the basis function

in Dβ. Define

Rµ,Σ =

{
i

∣∣∣∣ β

2(1 + β)
(xi − µ)′Σ−1(xi − µ) < 1, xi ∈ D

}
. (9)

(b) For xi such that i ∈ Rµ,Σ, calculate

q(xi) =
πϕ(xi)

(1− π)fk−1(xi)1+β + πϕ(xi)
(10)

µq =

∑
Rµ,Σ

q(xi)
1

1+βxi∑
Rµ,Σ

q(xi)
1

1+β

. (11)

where
∑

Rµ,Σ
is the summation of i over Rµ,Σ.

(c) Update µ = µq and go to step (d) if Rµ,Σ ⊂ Rµq,Σ; otherwise go back
to step (b).

(d) For xi such that i ∈ Rµ,Σ, update q(xi) as in (10) and calculate

Σq =
2 + (2 + p)β

2(1 + β)

∑
Rµ,Σ

q(xi)
1

1+β(xi − µ)(xi − µ)′∑
Rµ,Σ

q(xi)
1

1+β

. (12)

(e) Update Σ = Σq and go to step (f) if Rµ,Σ ⊂ Rµ,Σq; otherwise go back
to step (d).

(f) For xi such that i ∈ Rµ,Σ, update q(xi) as in (10) and calculate

πq =
A
1+β
2

A
1+β
1 + A

1+β
2

, (13)

where

A1 =
∑
Rµ,Σ

(1− q(xi))
1

1+βfk−1(xi)
β (14)

A2 =
∑
Rµ,Σ

q(xi)
1

1+βϕ(xi)
β

1+β , (15)

and update π = πq, and q(xi) as in (10).

(g) Repeat the steps from (b) to (f) until the values of µ,Σ and π converges,
and set them to be µk,Σk, πk, respectively.

(h) Update fk−1 with ϕk(x) = ϕβ(x,µk,Σk) and πk as

fk =
{
(1− πk)f

1+β
k−1 + πkϕk

} 1
1+β

. (16)

3. Output f̂ = fK .

Theorem 2.1The empirical loss Lβ(fk) in the boosting algorithm is
monotonically decreasing with respect to k. That is, for k = 1, . . . , K,

Lβ(fk) ≤ Lβ(fk−1). (17)
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(a) true density
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(b) boosting (β = 0.5)
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(c) boosting (β ≪ 1)
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(d) kernel

Fig1. Contour plots for the true density (a) and density estimators by three methods (b),

(c) and (d). Observations from the normal distributions are denoted by circles; noisy obser-

vations are denoted by cross marks. Observations that are not used in the estimation are

deleted in the panel (b).


