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Density estimation based on U-divergence

Osamu Komori
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1 U-divergence

Let U : RT — R be a convex and strictly increasing function with the
derivative u and the inverse function & = w1, Then for real-valued func-
tions f and g : RP — R, the U-divergence is given as a special case of the
Bregman divergence (?):

Dyrlg. f) = / d(E(g(@)), &(f ()))da, (1)
where

dg', ) =U(f") = {ulg)(f =9+ Ulg")}. (2)

Note that Dygr(g, f) is non-negative because of the convexity of U. The
equality holds if and only if f = g (a.e.x). It is also simply expressed as

Dyl(g, f) = Cylg, f) — Hy(g), (3)

where

Clg, f) = — / g(@)E(f(a)da + / U(E(f (@)))de (4)
Hyr(g) = - / g(@)E(g())dz + / U(E(g())de (= Clg,g),  (5)

and Cyr(g, f) and Hyr(g) are called the U-cross entropy and U-entropy, re-
spectively.

U-loss function with volume-mass-one

The U-loss function for observations D = {x1, ..., x,}, which derived from

the cross-entropy in (4), is defined as

Ly(f) = —% Z E(f(my)) + / U(E(f(x)))dee. (6)

Then, we consider the followzin; variant:
Ly(f) = Ly(w(UH()) (7)
= —% 2} U~ (f() +1 (8)

The point is that the second integral term in (6) is restricted to be 1, which

we call volume-mass-one. Here we consider U(t) = (1 + 8t)1T8)/8 /(1 + g)
with 38 > 0.

2 Algorithm

(c) Update pp = p, and go to step (d) it R, s C R, =; otherwise go back
to step (b).

(d) For x; such that ¢ € R, s, update g(x;) as in (10) and calculate
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(e) Update 3 = 3, and go to step (f) if R, s C R, x,; otherwise go back
to step (d).

(f) For x; such that ¢ € R, », update g(;) as in (10) and calculate

ALHB
Tq = : , (13)
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where
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A= (1= q(x)™ fr_1(z;)” (14)
Rux
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Ay = ) qlmy) W (a;) T, (15)
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and update m = 7y, and ¢(x;) as in (10).

(g) Repeat the steps from (b) to (f) until the values of p, ¥ and 7 converges,
and set them to be ., 3., 7., respectively.

(h) Update fi_1 with ¢g(x) = g, py, i) and 7y as

fr = {(U =m0 7]+ mpon } T (16)

3. Output f = fr.

1. Set fo(x) = 0.
2.Fork=1,... K,

(a) Initialize m = mp (K 1) , X =T and pu = argérrll)in{ﬁﬁ((l — w)f;if 4+
L

wo(p, I )) }, where I is the p X p identity matrix; ¢ is the basis function
n Dﬁ. Define
5

Rz = { 21+ )

(b) For @; such that ¢ € R, =, calculate

(@, — )/ S @, — p) < 1, a; € D}- (9)

mo(x;)

q(x;) = (10)
T (=) froale) ()
1

>R,y d(@i) X

py, = —== - (11)
2R,x d(X)
where ZR%E 1s the summation of ¢ over R, .
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Theorem 2.1 The empirical loss Eﬁ( fr) in the boosting algorithm 1is
monotonically decreasing with respect to k. That is, fork=1,..., K,

Ls(fr) < Ls(fr—1)- (17)
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(c¢) boosting (8 << 1)

(d) kernel

Figl. Contour plots for the true density (a) and density estimators by three methods (b),
(c) and (d). Observations from the normal distributions are denoted by circles; noisy obser-
vations are denoted by cross marks. Observations that are not used in the estimation are
deleted in the panel (b).
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