LiSDAS: Life Science Data Assimilation Systems
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Computational Systems Biology in New Dimensions Molecular biology is driving a need for state-of-
art data science due to a rapid progress of experimental technology accompanying massive information in life
science. Over the past decades, a wide variety of statistical technologies has been developed in bioinformatics
and computational systems biology to uncover a complex world of cellular systems made of several types of
biological circuits. LiSDAS prowdea a cutting-edge statistical toolbox targeting data-driven model building of
in silico biological circuits—biochemical simulator—using high-performance computing.

Data-Driven In Silico Modelling of Biological Circuits Biological circuits, such as transcription fac-
tor regulatory circuits and signal transduction pathways, can sense many different environmental signals, and

respond to these extraneous stimuli by switching activation/inactivation of target proteins and also enhanc-
ing /repressing rates of gene decoding. Kinetic modelling of bloch(-smlca.l reactions using stochastic/non-stochastic
differential equations has become a major branch of systems biology. Simulation realizes experiments in silico to
enhance our understanding of dynamic cellular activities. It also provides a way to test plausibility of currently-
obtained reaction models and to create further new hypotheses where inconsistencies arise in simulation, domain
knowledge and obtained experimental data.

Despite of a growing need for simulation-based approaches, some fundamental issues limit drawing their
potential in practical applications. The major problems are associated with model uncertainty. To proceed to
siimulations, it is an essential first step to find effective values of kinetic rates that are difficult to measure from in
vivo experiments and also in theoretical kinetic analyses. Besides, a circuit structure modeled upon interactome
database or literature is, in many applications, totally unreliable because of environmental dependency and
diversity of cells. LiSDAS features basic functions to explore kinetic parameter values and also to retrieve
hypothetical biological circuits from huge configuration space of potential model sets such that simulation
trajectories fit experimentally-obtained profiles of biological species on diverse scales from molecules to omics.

State Space Models A biological circuit is modeled as a set of differential equations dz;(t)/dt = f;(pa,(z),8)
that defines rates of change in concentrations of p biological entities, x(t) = (z;(t))1<i<p, OVer continuous times
t € 7. The ith variable is regulated by the parent variables pa,(z) with the rate equation f; having a set of
kinetic parameters, 6. Conduction of in vivo or in vitro time course experiments enables us to measure changes
in concentrations of target molecules y,, = (yin)1<i<p € RY ' during discrete time points n € N C T. To proceed
with a statistical learning, we here relate the differential equations to the experimental data using the state
space model:

Yin = Tin + Win With x4, = 2;(t) (1)
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where w;,, and v;(t) denote respectively measurement and system noises independently and identically dis-
tributed. The process of generating Y = {y,|n € N'} and X = {z(¢)|t € T} follows (1) and (2) with initial con-
centration x(0) having a certain distribution 2(0) ~ p(x(0)). Bayesian inversion analysis explores the unknown
parameters in the model—initial state x(0) and kinetics #—through the posterior distributions p(x(0),0|Y,G)
and p(G|Y) under which a circuit structure G—pa,(x), i.e. set of reactants for each variable—is specified or
unknown, and @ priori knowledge on reaction kinetics is expressed in a prior distribution p(6).

Inversion Analysis In many applications, any analytical form of the posterior distribution is unavailable,
and so an efficient approximation is required to perform for solving Bayesian inversion, i.e. search for posterior
means or modes. Our study started from Nagasaki et al. (2006) that provoked the use of a simple SMC
(sequential Monte Carlo) technique to identify kinetic parameters in a transcription circuit of mammalian
circadian clock. Since then, we have explored a range of efficient Monte Carlo search algorithms for effective
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posterior learning as well as stochastic/non-stochastic search methods (Yoshida et al. (2008), Nakamura et
al. (2009), Yoshida and West (2010)). A key notion of the SMC-based search lies in a common idea that
the posterior distribution is evaluated approximately over a finite set of Monte Carlo samples called particles.
Whenever following such approaches, however, a quite huge number of particles are needed to draw as raising the
number of unknown parameters. The difficulty then arises from a huge space of model parameters {6, z(0)} and
combinatorial explosions of interacting model variables (proteins, mRNAs) involving a search of G. In a joint
exploration of {6, z(0)} and G, we must draw a sufficient size of particles, e.g. billion or more, corresponding
to {6,z(0)} for each configured network G. We are now aiming to realize such large-scale computation on the
next generation of supercomputer.

Stochastic Search for Kinetic Parameters and Circuit Structures Recently, we are exploring a hybrid
algorithm of SMC, deterministic/non-deterministic annealing and MCMC as well as the use of Diriclet process
mixture in prior modelling. We briefly describe a conceptual view of our sampling strategy. Having a number
of particles in any step of the SMC algorithm with assigned importance weights (likelihood), it is likely to be
more efficient that the next draws explore more on local regions around one of the previously-obtained particles
having large weights. On the contrary, some local areas enveloping particles with trivial weights should be
ignored more or less. To gain efficiency, the subsequent incremental sampling shall utilize the realized weights
that contain knowledge on local structure of target distribution. Another mechanism we aim to realize is an
adaptive control of the degree of dispersion in sample move. At the beginning of the sequential sample increment
where less information on local structure is available, we shall allocate particle points more uniformly over the
entire parameter space to learn characteristics of target distribution. As raising the number of samples in which
sufficient information on local structure has been aggregated, particles should be drawn intensively on more
local area surrounding an important particle.

One more key factor for efficient inversion analysis lies in design of prior distributions reflecting substantial
knowledge on biochemistry. Each unit of biological circuits evolves over different timescales: signal transduction
pathways usually change transcription factor activities on sub-second time scales. Binding of transcription
factor to its target promoter reaches equilibrium in seconds. Transcription and translation of genes take many
minutes in reaching steady state. In practice, these time scales can often be inferred at some extent from
experimental data. LiSDAS automatically generates prior distributions, called steady-state priors, so that
successively-generated particles move around a biologically-significant subspace of kinetic parameters.

Lung Cancer Systems Biology As a target problem, LiSDAS project aims to discover regulatory pathways
involving new, effective clinical biomarkers of lung cancers. Diversity and complexity of lung cancer dynamic
systems have been obstacles in identifying key regulatory molecules applicable to prognosis and clinical treat-
ment. We acquired time course gene expression profiles of normal lung epithelial cells treated with EGF and/or
gefitinib, a specific EGF receptor tyrosine kinase (RTK) inhibitor, as well as a naive simulation model reflecting
well-known molecular interactions among relevant genes. However, the currently-obtained model was unable
to reproduce the experimental data in simulation. This inconsistency indicates the lack of mechanisms to be
incorporated in further model revisions. Our project is going on to develop a highly-versatile, practical in silico
circuit together with experimental biology.
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