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Introduction
We consider the parametric estimation problem for the simple self-correcting point (SSCP)

process which is first introduced by Inagaki and Hayashi (1990). Our main concern is the

threshold estimation problem for the the SSCP process. This is one of the non-regular

parametric estimation problems since the likelihood function is discontinuous with respect

to the threshold parameter. In such non-regular estimation problems, the likelihood ratio

approach is effective to study asymptotic properties of the MLE. Also we provide a simple

equation that indicates the invariant density of the stress release process. This invariant

density helps us to study the asymptotic properties of the maximum likelihood estimator

for the SSCP process.

Stress Release Process
The self correcting point process Nt is a point process with the conditional
intensity function λt = φ(t −Nt−). To study some properties for the self-
correcting point process, the stress release process Xt = t −Nt plays an
important role. When the function φ(·) satisfies the suitable conditions,
it was shown that the stress release process Xt is ergodic, see Hayashi
(1986), Vere-Jones (1988). Let f be its invariant density, then we provide
a simple formula that helps us to calculate the invariant density function f

of the stress release process.

Theorem 1

The invariant density function f (x) of the stress-release process

Xt is given by the solution of the integral equation:

f (x) =
∫ x+1

x
φ(y) f (y) dy (1)

with ∫ ∞

−∞
φ(y) f (y) dy = 1. (2)

Simple Self-Correcting Point Process
The SSCP process has the conditional intensity function:

λt = φ(Xt−) =

⎧⎪⎪⎨
⎪⎪⎩

a, Xt− < τ

b, Xt− ≥ τ
,

where a and b are some constants with 0 < a < 1 < b < ∞. By Theorem 1,

the invariant density f (x) for x ≥ τ is given by

f (x) = c(1− p)px−τ, (3)

where p (0 < p < 1) is the solution of the equation

log p = b(p−1) and c =
b(1−a)

b−a
.

For x < τ , it is difficult to obtain the invariant density f (x) clearly, but it can be calculated by

solving the equation (1) sequentially on each interval [τ − k,τ − k +1), k = 1,2, . . ., see Figure.

Sample Path and Invariant Density (a,b) = (0.1,3.0) Sample Path and Invariant Density (a,b) = (0.5,1.5)

　

Intensity Estimation
Provided that the threshold parameter is known, we estimate the intensity
parameter θ = (a,b)T . The likelihood function is given by

LT(θ ) = exp
{∫ T

0
logλt dNt −

∫ T

0
λt dt

}
(4)

= exp
{

loga
∫ T

0
1{Xt−<τ} dNt + logb

∫ T

0
1{Xt−≥τ} dNt −a

∫ T

0
1{Xt−<τ} dt −b

∫ T

0
1{Xt−≥τ} dt

}
.

The likelihood estimating function is

∂
∂ a

logLT(θ) =
1
a

∫ T

0
1{Xt−<τ} dNt −

∫ T

0
1{Xt−<τ} dt =

1
a

∫ T

0
1{Xt−<τ} dMt,

∂
∂ b

logLT(θ) =
1
b

∫ T

0
1{Xt−≥τ} dNt −

∫ T

0
1{Xt−≥τ} dt =

1
b

∫ T

0
1{Xt−≥τ} dMt.

Hence the maximum likelihood estimators of a and b are

dMt = dNt −λt dt

âT =
∫ T

0 1{Xt−<τ} dNt∫ T
0 1{Xt−<τ} dt

and b̂T =
∫ T

0 1{Xt−≥τ} dNt∫ T
0 1{Xt−≥τ} dt

.

The asymptotic normality is proved by the martingale central limit theorem.
The Fisher information matrix can be evaluated as follows:

IT(θ )
T

=
1
T

⎛
⎝ E[

∫ T
0 1{Xt−<θ} dt]/a 0

0 E[
∫ T

0 1{Xt−≥τ} dt]/b

⎞
⎠−→ I(θ ) =

⎛
⎝ b−1

a(b−a) 0

0 1−a
b(b−a)

⎞
⎠ .

Threshold Estimation
Next we assume that a and b are known. The likelihood (4) is not differen-
tiable with respect to τ , so the MLE is defined by

τ̂T = argsup
τ∈Θ

LT(τ),

where Θ is a parametric space. Consider the likelihood ratio process:

ZT(h) =
LT(τ + h

T )
LT(τ)

, τ ,τ +
h
T
∈ Θ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
{

log
a
b

∫ T

0
1{τ≤Xt−<τ+ h

T } dNt − (a−b)
∫ T

0
1{τ≤Xt−<τ+ h

T } dt
}

, h > 0

exp
{

log
b
a

∫ T

0
1{τ+ h

T≤Xt−<τ} dNt − (b−a)
∫ T

0
1{τ+ h

T≤Xt−<τ} dt
}

, h < 0
.

Theorem 2
The likelihood ratio process ZT(h) weakly converges to

Z(h) =

⎧⎪⎪⎨
⎪⎪⎩

exp
{

log
a
b

N f (τ)b(h)− (a−b) f (τ) ·h,
}

, h > 0

exp
{

log
b
a

N f(τ)a(|h|)− (b−a) f (τ) · |h|
}

, h < 0
,

in the Skorohod space D(R), where N f (τ)b and N f (τ)a are independent Poisson
processes with the intensities f (τ)b and f (τ)a, respectively.

This theorem provides the standardized asymptotic distribution of the MLE as follows:

Pτ0 (T (τ̂T − τ0) ∈ Δ) = Pτ0

(
sup
h∈Δ

ZT(h) > sup
h �∈Δ

ZT(h)

)

→ Pτ0

(
sup
h∈Δ

Z(h) > sup
h �∈Δ

Z(h)

)

= Pτ0

(
ĥ ∈ Δ

)
. ĥ = argsup

h∈R
Z(h)
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