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We performed experiments using the Lorenz 96 model (Lorenz and Emanuel, 1998),
in which the evolution of each component xj is written as

dxj

dt = (x j+1 − x j−2)x j−1 − x j + 8

where j = 1, . . . , J, x−1 = xJ−1, x0 = xJ , and xJ+1 = x1. Here, the dimension J was set
as 40. One time step was set as 0.005.

We generated artificial data from a run with a certain initial condition.   The artificial 
data are generated 

• every 10 time steps
• with artificial noises having a standard deviation of 1.5.

It was also assumed that the data for xj can be acquired if j is an even number ( j =
2, . . . , 40); that is, half of the state variables are observed.

In assimilating the artificial data, the system noise was assumed to be a Gaussian
noise with zero mean and a diagonal covariance as diag(0.25, . . . , 0.25). The likelihood
was calculated as follows:

p(yk|xk|k−1) =
1

√2πσ
exp −

||yk − Hxk|k−1||2

2σ 2

where yk is the observation vector (y1,k, . . . , y20,k) and σ was specified as 3. The operator
H extracts the observable components from the state vector xk|k−1; that is, Hxk|k−1 =
(x2,k|k−1 x4,k|k−1 . . . x40,k|k−1)T .

RMS dev.: The root-mean-squares between the estimates and the 
true values over 10000 steps

The elapsed times were measured on a super-computer of ISM 
(ismrx). Here, each core is regarded as one PE, and each PE is 
regarded as one virtual node of the two-dimensional torus network. 
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The particle filter approximates a probability density function by a large number of
particles. The predictive density function p(xk|y1:k−1) at time tk can be approximated as

p(xk|y1:k−1) ≈
1
N

N

i=1

δ xk − x(i)
k|k−1 (1)

where {x(1)
k−1|k−1, x(2)

k−1|k−1 , · · · , x(N)
k−1|k−1} is a set of samples drawn from p(xk−1|y1:k−1), N is

the number of the samples, and δ denotes Dirac’s delta function.

Using the observation at time tk, yk, a particle approximation of the filtered density
function p(xk|y1:k) is obtaiend by using Bayes’ theorem as follows:

p(xk|y1:k) =
p(yk|xk) p(xk|y1:k−1)

p(yk|xk) p(xk|y1:k−1) dxk

≈
1

j p yk|x
( j)
k|k−1

N

i=1

p yk|x
(i)
k|k−1 δ xk − x(i)

k|k−1

=
N

i=1

wiδ xk − x(i)
k|k−1

(2)

where p(yk|x
(i)
k|k−1) is the likelihood of x(i)

k|k−1 given the data yk and the weight wi is defined
as

wi =
p(yk|x

(i)
k|k−1)

j p(yk|x
( j)
k|k−1)

. (3)

Then, we obtain a new ensemble {x(1)
k|k , · · · , x(N)

k|k } which approximates p(xk|y1:k) by re-
sampling with replacement from the predictive ensemble {x(1)

k|k−1, · · · , x(N)
k|k−1} where x(i)

k|k
with a higher weight wi is taken more frequently. The new ensemble may contain multi-
ple copies of x(i)

k|k−1. which was originally contained in the predictive ensemble. Let the
number of copies of x(i)

k|k−1 in the new ensemble, n(i)
k , be an integer to satisfy

n(i)
k ≈ Nwi, n(i)

k ≥ 0 (for all i), and n(i)
k = N. (4)

Then, the filtered density function p(xk|y1:k) can be approximated by using the new
ensemble as follows:

p(xk|y1:k) ≈
N

i=1

wiδ xk − x(i)
k|k−1 ≈

N

i=1

n(i)
k

N
δ xk − x(i)

k|k−1

=
1
N

N

i=1

δ xk − x(i)
k|k .

(5)

PEs Particles RMS dev. Elapsed time

4 × 4 65536 0.85 01m12s

8 × 8 262144 0.77 03m55s

16 × 16 1048576 0.73 17m18s

PEs Particles RMS dev. Elapsed time

4 × 4 65536 0.84 00m40s

8 × 8 262144 0.77 00m54s

16 × 16 1048576 0.73 01m45s
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Prediction
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Prediction: easy to parallelize

Filtering: many data transfers occur randomly 

between different processing elements (PEs)

Particle filter on a parallel computer

The efficiency can be seriously affected by data transfers between different PEs in 
each filtering step. 

The resampling procedure in the filtering step is difficult to parallelize because it 
requires many random data transfers. 

Parallel computer with a torus network

The network topology of the Next-Generation 
Supercomputer in Japan, which is currently 
under development, is planned to be a virtually 
three-dimensional torus. 
 
In a distributed computing system with a torus 
network, while a data transfer with an adjacent 
PE is fast, a data transfer with a distant PE is 
slow due to multiple hops and it might even 
impede data transfers between other PEs. 

In the particle filter, inter-PE data transfers occur many times between 
randomly selected two PEs. Hence, data transfers between distant nodes 
may occur frequently. 

Two-dimensional torus network

We can divide the particles in the ensemble into multiple groups, and we can 

resample the particles within each group. Although each group offers an 

approximation of the filtered probability density function (PDF), the integration 

of all the group reinforce the estimation of the filtered PDF. 

Resampling within a group

Define Ω(µ)
k and ω(µ,ν)

k such that

Ω(µ)
k ω

(µ,ν)
k = w([µ−1]λ+ν)

k

λ

ν=1

ω(µ,ν)
k = 1

Λ

µ=1

Ω(µ)
k = 1 Λλ = N.

Then,

p(xk|y1:t) ≈
N

i=1

w(i)
k δ xk − x(i)

k|k−1

=
Λ

µ=1

Ω(µ)
k

λ

ν=1

ω(µ,ν)
k δ xk − x([µ−1]λ+ν)

k|k−1 .

(6)

Similarly to Eq. (5), we can approximate each term of the summation in Eq. (6) as

Ω(µ)
k

λ

ν=1

ω(µ,ν)
k δ xk − x([µ−1]λ+ν)

k|k−1 ≈ Ω(µ)
k

λ

ν=1

m(µ,ν)
k

λ
δ xk − x([µ−1]λ+ν)

k|k−1 (7)

where m(µ,ν)
k satisfies

m(µ,ν)
k ≈ λω (µ,ν)

k , m(µ,ν)
k ≥ 0, (for all µ and ν), and

λ

ν=1

m(µ,ν)
k = λ (for all µ).

(8)
We devide the predictive ensemble {x(i)

k|k−1}
N
i=1 into Λ subsets, each of which contains

λ particles, and resample with replacement from each subset {x([µ−1]λ+ν)
k|k−1 }λν=1 to obtain a

set of particles which contains n([µ−1]λ+ν)
k copies of x([µ−1]λ+ν)

k|k−1 for each µ. Using the new
subset {x ([µ−1]λ+ν)

k|k }λν=1, we can approximate the filtered distribution as

p(xk|y1:t) ≈
Λ

µ=1

Ω(µ)
k

λ

ν=1

m(µ,ν)
k

λ
δ xk − x([µ−1]λ+ν)

k|k−1

=
Λ

µ=1

Ω(µ)
k

λ

λ

ν=1

δ xk − x([µ−1]λ+ν)
k|k .

(9)

We divide the PEs in use into multiple groups. Each of particles is divided 
into one of the groups according to the PE which the particle is assigned to. 

We may resample the particles within each PE group. 

We can even change the grouping at each time step; that is, PEs which were 
previously embraced by different groups can be put together to form a new 
group (Bolić et al. 2005*). 

We consider a strategy to use two grouping patterns which is suitable to a 
torus network topology. In this strategy, the two grouping patterns are 
alternately switched. 

By dynamically switching between the two grouping patterns, each node is 
put together with three nodes each of which was embraced by a different 
group. The information of a particle with high likelihood may propagate to all 
the nodes after several time steps. 

Result using global particle filter

Result using the alternate switching method

The present study proposes a dynamic grouping strategy 
which achieves high efficiency on a massively parallel 
computing system. 

In the proposed strategy, the resampling at each time step is 
performed within each PE group. Data transfers are thus 
restricted within the PE group. 

Since the resampling for different PE groups can be done in 
parallel, the time cost would be remarkably reduced. 

The grouping is not static but the two grouping patterns are 
alternately switched. This switching allows us to maintain 
the diversity of the ensemble because particles assigned to 
each node are exchanged with various other nodes by 
changing the grouping. 

It has been confirmed that this strategy is notably effective 
especially for the cases with a large number of nodes in 
which the normal global PF is prohibitive. 

* Bolić et al.: ‘Resampling algorithms and architectures for distributed particle filters. IEEE Trans. Signal 
Processing, v. 53, p. 2442, 2005.  


