数値シミュレーションと 3D 可視化システムによるオーロラの再現

才田 聡子 予測発見戦略研究センター 融合プロジェクト特任研究員

オーロラについて

オーロラとは

宇宙空間から飛来したプラズマが地球大気中の酸素原 子、窒素分子などに衝突すると、酸素原子、窒素分子は 特有の光を発する。これがオーロラである。

and the she was the second and

宇宙空間のプラズマは磁力線に沿って移動するため、オ ーロラの動きや形は宇宙空間に生じる電磁気現象を反 映しているといえる。

オーロラ研究の問題点

オーロラ発生時に宇宙空間に生じる電磁気現象の研究

数値シミュレーションと 3D 可視化システム

Global MHD Simulation

電磁流体(Magnetohydrodynamic; MHD)方程式を使い 磁気圏電離圏の電磁 流体としてのプラズマの振る舞いを数値シミ ュレーションで再現。

Tanaka, T. Finite volume TVD scheme on unstructured grids for space MHD simulations and space weather. Proceeding of Simulation

2010 年 7 月 9 日 統計数理研究所 オープンハウス

は、従来は人工衛星による直接観測データの統計結果 にもとづいていた。オーロラ発生時の過渡的な電磁場環 境を考慮しない統計の過程では、オーロラの動きや形を 支配する重要な物理構造が失われる可能性がある。

本研究の目標

数値シミュレーションでオーロラ発生時の宇宙空間に おける電磁場環境を再現し、オーロラの動きや形を支配 する物理過程を立体的に可視化する。

School at Nagoya, 2002.

T. Tanaka, Comp. Fluid Dyn. J. 1, 14 (1992)

3D可視化システム

本研究ではAVS Express/Developerで開 発された3D可視化ツールを用いてIMFを南 向きに変化させた後の磁気圏近尾部の様子 をモニターした。

オーロラ関連現象の再現

宇宙空間における電磁気現象とオーロラ

人工衛星による直接観測データの統計解析の結果、オーロラ発生 にともなって以下に示すいくつかの特徴的な現象が発生するとさ れている:

x=-10--7Re:磁場の北向き成分とプラズマ圧の増加 x=-18--12Re:地球方向のプラズマ流発生、プラズマ圧の減少

プラズマ流の発生とオーロラ発生領域の推定 子午面上のプラズマ圧の変動(左)と電離層に入射する電流(下 図上段)と電離層に磁力線沿いにかかるプラズマ圧(下図下段)。 下図からオーロラの発生するおおよその位置を推定できる。

これらの特徴のシミュレーションによる再現を試みた。

本研究の経過と成果

数値シミュレーション結果から示された非共役性オーロラの発生 磁力線で結ばれた南北両半球上の地点(地磁気共役点)からは対称的な形のオーロラが同時に 観測されると一般的に期待されるが、実際の地磁気共役点における観測では形や動き、出現領域

が一致しない非共役性オーロラも多く観測される。

本研究でシミュレーションを実行した結果、オーロラの発生時に宇宙空間ではプラズマ圧が増加 する一方で磁場圧が減少する反磁性的な性質が表れた。磁場圧の減少した領域では磁力線は経 度方向に大きく歪められ、地磁気共役点も地表で大きく移動した。地磁気共役点の相対位置の差 は経度方向に約40度に達した。直接観測データの統計解析結果から得た経験モデルに対して同 じ条件を入力すると地磁気共役点の相対位置の差はわずか2~3度である。 本研究の結果から、従来の統計の過程で失われていた物理構造が非共役オーロラの発生に大き く寄与することが示された。数値シミュレーションがオーロラ研究に重要な役割を果たすことを証 明し、これまで議論のあった非共役オーロラの発生の原因に1つの解を与えることができた。

The Institute of Statistical Mathematics