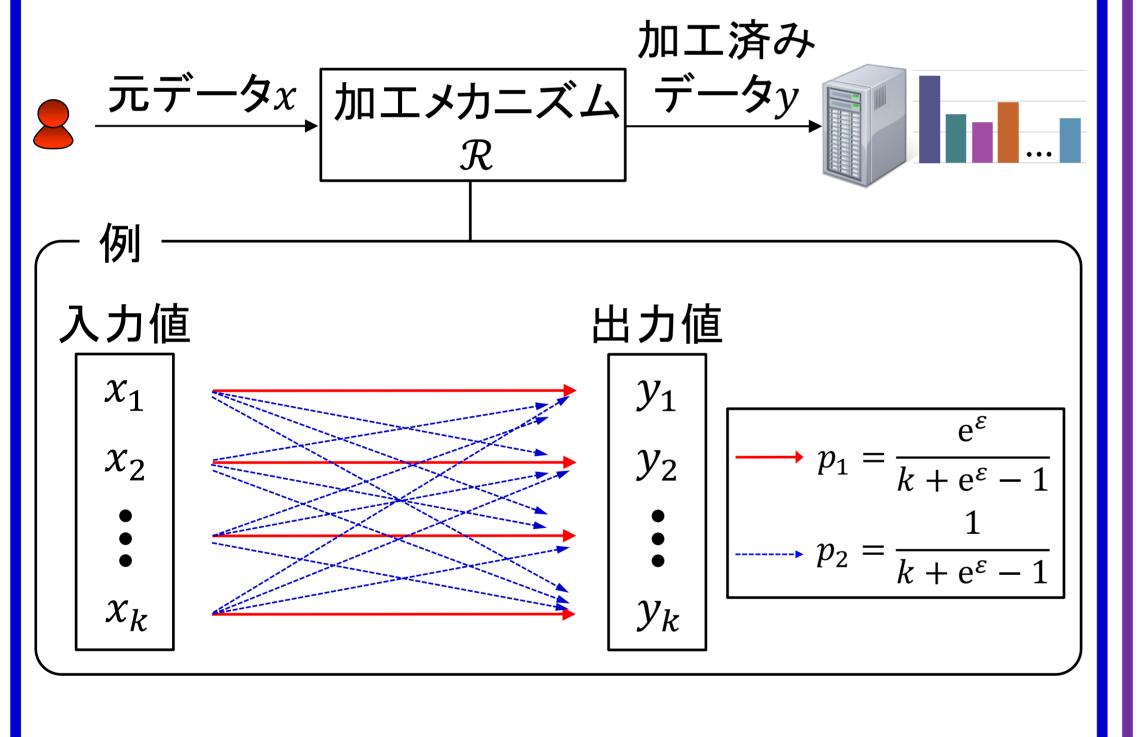

# 差分プライバシーと統計解析への応用

村上 隆夫 学際統計数理研究系 准教授


### 1. プライバシー問題

- IoTなどの普及に伴い、パーソナルデータの統計解析 (例:人気スポットの分析)への期待が高まっている
- 一方、プライバシーの問題が懸念されている



### 2. 差分プライバシー

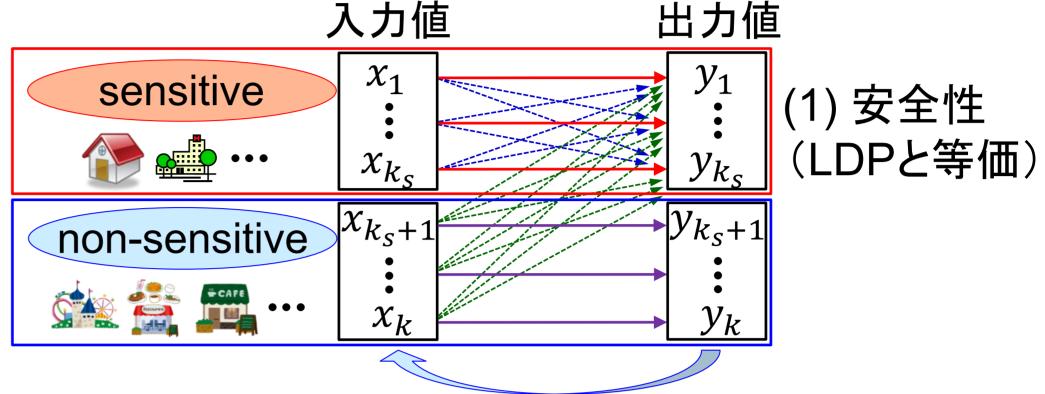
- プライバシー保護技術の安全性指標のデファクト標準
- 近年、ユーザが自分で加工を行う「局所型差分プライバシー」(LDP: Local Differential Privacy)が実用化
- 例: GoogleがChromeの起動ページをLDPで解析



#### 定義( $\varepsilon$ -LDP)

あらゆる元データ $x, x' \in X(X)$ : 定義域)と加工済みデータ $y \in Y(Y)$ : 値域)に対して

 $\Pr(y|x) \le e^{\varepsilon} \Pr(y|x')$ 

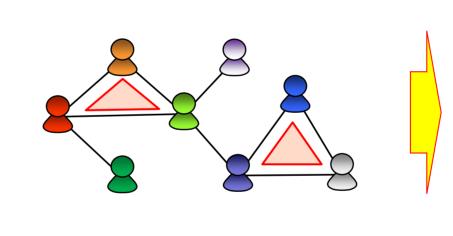

が成立するとき、加工メカニズム $\Re$ は $\epsilon$ -LDPを満たす ( $\epsilon$ : privacy budget)

#### 直感的解釈

 $\varepsilon$ が小さいとき(例:0~1)、 $\Pr(y|x)$ と $\Pr(y|x')$ が近い  $\rightarrow$  攻撃者がyを見ても、入力値が分からない(安全)

### 3. LDPの有用性改善[1]

- 新しい安全性指標: ULDP(Utility-Optimized LDP)
  - sensitiveな入力値に対しては、LDPと等価な 安全性を保証(安全性)
  - non-sensitiveな出力値からは対応する元データに戻せる(可逆性) → ノイズ量の削減




(2) 可逆性

GoogleがChromeに実装したLDPメカニズムの有用性(分布推定精度)を大幅向上

## 4. LDPに基づくグラフ統計解析[2]

- グラフ統計(部分グラフ数)
  - 「友達の友達が友達である確率」= 3 × #triangles #2-stars
    → 友達推薦の有効性が分かる
  - 但し、秘密の友達情報(edge)の漏洩は防ぎたい



| Shape | Name     | Count |
|-------|----------|-------|
|       | Triangle | 2     |
| 8     | 2-star   | 15    |
|       | 3-star   | 6     |

- LDPに基づくグラフ統計解析
  - k-starsに対しては1ラウンド、trianglesに対しては 2ラウンドのLDPメカニズムを提案



 k-starsは提案が最適、trianglesは2ラウンドで MSE(平均二乗誤差)が大幅に減ることを証明

MSE  $(n: ユーザ数, d_{max}: 最大次数 (<math>\ll n$ ))

|           | 1ラウンド                                        |                      | 2ラウンド           |
|-----------|----------------------------------------------|----------------------|-----------------|
|           | 下限                                           | 上限                   | 上限              |
| k-stars   | $\boxed{\mathbf{\Omega}(nd_{max}^{2k-2})} =$ | $O(nd_{max}^{2k-2})$ | -               |
| triangles | $\Omega(nd_{max}^2)$                         | $O(n^4)$             | $O(nd_{max}^3)$ |

[1] Takao Murakami, Yusuke Kawamoto, "Utility-Optimized Local Differential Privacy Mechanisms for Distribution Estimation," Proc. USENIX Security, 2019.

[2] Jacob Imola\*, Takao Murakami\*, Kamalika Chaudhuri (\*: equal contribution), "Locally Differentially Private Analysis of Graph Statistics," Proc. USENIX Security, 2021.