## Self-dual polyhedral cones

#### Bruno F. Lourenço **Department of Fundamental Statistical Mathematics Associate Professor**

Based on a joint work [2] with João Gouveia (University of Coimbra).

#### **Polyhedral cones** 1

 $\mathcal{K} \subseteq \mathbb{R}^d$  is a **polyhedral cone**  $\stackrel{\text{def}}{\iff} \mathcal{K}$  is the set of solutions of finitely many linear inequalities, i.e.,  $\exists A \in \mathbb{R}^{n \times d}$  such that  $\mathcal{K} = \{x \in \mathbb{R}^d \mid Ax \ge 0\}$ . Let  $\langle \cdot, \cdot \rangle$  be an inner product on  $\mathbb{R}^d$ . The **dual cone** is

 $\mathcal{K}^* \coloneqq \{ y \in \mathbb{R}^d \mid \langle x, y \rangle \ge 0, \forall x \in \mathcal{K} \}.$ 

 $\mathcal{K}$  is **self-dual**  $\stackrel{\text{def}}{\iff}$  there exists *some* inner product such that  $\mathcal{K} = \mathcal{K}^*$ . When is  $\mathcal{K}$  a self-dual cone?

Since  $\langle \cdot, \cdot \rangle$  may be arbitrary, hard to answer in general, e.g., see [3].

### **Slack matrices**

#### A surprising result 4

PSD slack matrices are nonnegative so they are doubly nonnegative matrices. **Theorem 2.** If  $\mathcal{K} \subseteq \mathbb{R}^d$  is self-dual and irreducible and  $M \in \mathbb{R}^{n \times n}$  is a PSD slack of  $\mathcal{K}$ , then M is a rank d extreme ray of  $DNN^n$ .

**Theorem 3.**  $X \in DNN^5$  is an extreme ray if and only if X is rank 1 or X is the slack matrix of an irreducible cone over a pentagon.

#### 5 A weird result

We recall some definitions.

- $X \in CP^n \iff \exists V \in \mathbb{R}^{n \times m}$ , with  $V \ge 0$  and  $X = VV^T$
- $X \in CS^n$  (completely positive semidefinite)  $\stackrel{\text{def}}{\iff} \exists A_1, \ldots, A_n \in S^m_+$ such that  $X_{ij} = \operatorname{tr} (A_i A_j)$ .
- $CP^n = CS^n$ , for  $n \le 4$  and  $CP^n \subsetneq CS^n$  for  $n \ge 5$ .

**Theorem 4.** Let S be a PSD slack matrix of a self-dual polyhedral cone  $\mathcal{K}$ . If S is not diagonal, then  $S \notin CS^n$ 

A slack matrix [4, 1]  $M \in \mathbb{R}^{n \times m}$  of  $\mathcal{K}$  is matrix obtained as follows:

• Let  $\{u_1 \ldots, u_n\}$  be the extreme rays of  $\mathcal{K}$ .

• Let  $\{v_1, \ldots, v_m\}$  be the extreme rays of  $\mathcal{K}^*$ .

•  $M_{ij} \coloneqq \langle u_i, v_j \rangle$ .

*Why?* Structural properties of  $\mathcal{K} \Leftrightarrow$  linear algebraic properties of M.

**Example 1:**  $\mathbb{R}^3_+$ 

• **Extreme rays**:  $\{e_1, e_2, e_3\}$ .

• Slack matrices:  $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ ,  $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ , etc.

**Example 2: cone over a pentagon** Start with a regular pentagon  $P_5$  in  $\mathbb{R}^2$  centered at the origin and take the cone in  $\mathbb{R}^3$  generated by  $1 \times P_5$ . • Extreme rays:  $(\cos(2\pi i/5), \sin(2\pi i/5), \sqrt{-\cos(4\pi/5)}), i = 0, ..., 4.$ • Example of slack matrix:

$$\begin{pmatrix} 1 + \cos\left(\frac{\pi}{5}\right) & \frac{\sqrt{5}}{2} & 0 & 0 & \frac{\sqrt{5}}{2} \\ \frac{\sqrt{5}}{2} & 1 + \cos\left(\frac{\pi}{5}\right) & \frac{\sqrt{5}}{2} & 0 & 0 \\ 0 & \frac{\sqrt{5}}{2} & 1 + \cos\left(\frac{\pi}{5}\right) & \frac{\sqrt{5}}{2} & 0 \\ 0 & 0 & \frac{\sqrt{5}}{2} & 1 + \cos\left(\frac{\pi}{5}\right) & \frac{\sqrt{5}}{2} \\ \frac{\sqrt{5}}{2} & 0 & 0 & \frac{\sqrt{5}}{2} & 1 + \cos\left(\frac{\pi}{5}\right) \end{pmatrix}$$

**Example 3:** 1-norm cone  $\mathcal{L}_1^3 = \{(x, y, z) \in \mathbb{R}^3 \mid |x| + |y| \le z\}$ • Extreme rays:  $\{(1, 0, 1), (-1, 0, 1), (0, 1, 1), (0, -1, 1)\}$ . • Extreme rays of  $(\mathcal{L}_1^3)^*$ : {(1, 1, 1), (-1, 1, 1), (1, -1, 1), (-1, -1, 1)}.

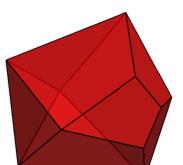
- $\mathcal{K} \subseteq \mathbb{R}^d$  has a diagonal slack  $\Leftrightarrow \mathcal{K}$  is linearly isomorphic to  $\mathbb{R}^d_+$
- Informal conclusion: PSD slacks are typically neither completely positive nor completely positive semidefinite!

#### 6 Finding self-dual cones via SDP

- Let  $M_{sup}$  be the **support** of a slack matrix of a combinatorially self-dual cone  $\mathcal{K} \subseteq \mathbb{R}^d$ .
- Permute the columns of  $M_{sup}$  so that  $M_{sup}$  is **symmetric** and has **no** zeroes in the diagonal.
  - If not possible, there is no self-dual cone whose slack matrix has the same support.
- Find  $X \in \text{DNN}^n$  with rank d such that  $X_{ij} = 0$  if and only if  $(M_{\text{sup}})_{ij} = 0$ . • If  $X = UU^T$ , with  $U \in \mathbb{R}^{n \times d}$ , then  $\mathcal{K}' := \text{cone rows}(U)$  is self-dual.

$$\begin{array}{ll} \max_{X \succeq 0} & \sum_{i,j} X_{i,j} \\ \text{s.t.} & X_{i,j} = 0 \text{ if } (M_{\text{sup}})_{i,j} = 0; \\ & X_{i,i} = 1 \text{ for all } i. \end{array}$$

• We relax the rank constraint and the non-negativity. Looks weak, but works surprisingly well.



# • Slack matrices: $\begin{pmatrix} 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \\ 2 & 2 & 0 & 0 \end{pmatrix}$ , etc.

#### 3 An expected result

**Theorem 1.** The following are equivalent.

(i)  $\mathcal{K}$  is self-dual with respect to some inner product.

(ii) Every slack matrix of  $\mathcal{K}$  is either PSD or becomes PSD after permuting rows and rescaling columns.

#### A 3D slice of a 4D numerically self-dual cone.

## 参考文献

[1] J. Gouveia, R. Grappe, V. Kaibel, K. Pashkovich, R. Z. Robinson, and R. R. Thomas. Which nonnegative matrices are slack matrices? Linear Algebra and its Applications, 439(10):2921–2933, 2013.

- [2] J. Gouveia and B. F. Lourenço. Self-dual polyhedral cones and their slack matrices. SIAM Journal on Matrix Analysis and Applications, 44(3):1096–1121, July 2023.
- [3] M. Ito and B. F. Lourenço. The automorphism group and the non-self-duality of p-cones. Journal of Mathematical Analysis and Applications, 471(1):392 – 410, 2019.

[4] M. Yannakakis. Expressing combinatorial optimization problems by linear programs. Journal of Computer and System Sciences, 43(3):441-466, 1991.



## The Institute of Statistical Mathematics