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1 Polyhedral cones

K ⊆ Rd is a polyhedral cone def⇐⇒ K is the set of solutions of finitely
many linear inequalities, i.e., ∃A ∈ Rn×d such that K = {x ∈ Rd | Ax ≥ 0}.
Let ⟨·, ·⟩ be an inner product on Rd . The dual cone is

K∗ := {y ∈ Rd | ⟨x, y⟩ ≥ 0,∀x ∈ K}.

K is self-dual def⇐⇒ there exists some inner product such that K = K∗.

When is K a self-dual cone?
Since ⟨·, ·⟩ may be arbitrary, hard to answer in general, e.g., see [3].

2 Slack matrices

A slack matrix [4, 1] M ∈ Rn×m of K is matrix obtained as follows:
� Let {u1 . . . , un} be the extreme rays of K.
� Let {v1, . . . , vm} be the extreme rays of K∗.
�Mi j := ⟨ui , vj⟩.
Why? Structural properties of K ⇔ linear algebraic properties of M.

Example 1: R3+
� Extreme rays: {e1, e2, e3}.

� Slack matrices:

1 1
1

 ,
0 0 11 0 0
0 1 0

, etc.
Example 2: cone over a pentagon Start with a regular pentagon P5 in
R2 centered at the origin and take the cone in R3 generated by 1× P5.
� Extreme rays: (cos(2πi/5), sin(2πi/5),

√
− cos(4π/5)), i = 0, . . . , 4.

� Example of slack matrix:
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Example 3: 1-norm cone L31 = {(x, y , z) ∈ R

3 | |x |+ |y | ≤ z}
� Extreme rays: {(1, 0, 1), (−1, 0, 1), (0, 1, 1), (0,−1, 1)}.
� Extreme rays of (L31)

∗:{(1, 1, 1), (−1, 1, 1), (1,−1, 1), (−1,−1, 1)}.

� Slack matrices:


2 0 2 0
0 2 0 2
2 2 0 0
0 0 2 2

, etc.

3 An expected result

Theorem 1.The following are equivalent.

(i)K is self-dual with respect to some inner product.
(i i) Every slack matrix of K is either PSD or becomes PSD after permuting
rows and rescaling columns.

4 A surprising result

PSD slack matrices are nonnegative so they are doubly nonnegative matrices.

Theorem 2. If K ⊆ Rd is self-dual and irreducible and M ∈ Rn×n is a PSD
slack of K, then M is a rank d extreme ray of DNNn.
Theorem 3.X ∈ DNN5 is an extreme ray if and only if X is rank 1 or X is
the slack matrix of an irreducible cone over a pentagon.

5 A weird result

We recall some definitions.

�X ∈ CPn def⇐⇒ ∃V ∈ Rn×m, with V ≥ 0 and X = V V T

�X ∈ CSn (completely positive semidefinite) def⇐⇒ ∃A1, . . . , An ∈ Sm+
such that Xi j = tr (AiAj).

� CPn = CSn, for n ≤ 4 and CPn ⊊ CSn for n ≥ 5.
Theorem 4. Let S be a PSD slack matrix of a self-dual polyhedral cone K.
If S is not diagonal, then S ̸∈ CSn

�K ⊆ Rd has a diagonal slack ⇔ K is linearly isomorphic to Rd+
� Informal conclusion: PSD slacks are typically neither completely positive
nor completely positive semidefinite!

6 Finding self-dual cones via SDP

� Let Msup be the support of a slack matrix of a combinatorially self-dual

cone K ⊆ Rd .
� Permute the columns of Msup so that Msup is symmetric and has no
zeroes in the diagonal.

– If not possible, there is no self-dual cone whose slack matrix has the
same support.

� Find X ∈ DNNn with rank d such that Xi j = 0 if and only if (Msup)i j = 0.
� If X = UUT , with U ∈ Rn×d , then K′ := cone rows(U) is self-dual.

max
X⪰0

∑
i ,j

Xi ,j

s.t. Xi ,j = 0 if (Msup)i ,j = 0;

Xi ,i = 1 for all i .

�We relax the rank constraint and the non-negativity. Looks weak, but
works surprisingly well.

A 3D slice of a 4D numerically self-dual cone.
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