Neural-Kernel Conditional Mean Embeddings |清水瑛貴 総合研究大学院大学 統計科学専攻 博士課程 (5年一貫制) 4年

Kernel Conditional Mean Embeddings

Kernel conditional mean embeddings (CMEs) offer a powerful framework for representing conditional distributions. Let positive definite kernels $k_X : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ and $k_Y : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ associated with RKHSs $\mathcal{H}_\mathcal{X}$ and $\mathcal{H}_\mathcal{Y}$, induce features $\psi(x) = k_\mathcal{X}(x, \cdot)$ and $\phi(y) = k_\mathcal{Y}(y, \cdot)$. The empirical estimate of CMEs (Song+, 2009) is expressed as:

Scalability: Gram matrix inverse can become prohibitively expensive for large dataset.

$$
\hat{\mu}_{P(Y|X)}(x) = \sum_{i=1}^n \beta_i(x)\phi(y_i) = \Phi\beta(x),
$$

where:

$$
\beta(x) = (K_X + \lambda I)^{-1} k_X.
$$

- **Expressiveness:** Pre-specified nature of RKHS features may lead to poor performance in practice.
- **Hyperparameter selection for** $k_{\mathcal{Y}}$: The objective function is defined in terms of the RKHS norm associated to k_y . Any change in kernel parameter fundamentally alters the objective.

Alternatively, this empirical estimate can be obtained by solving following function-valued regression problem (Grünewälder+, 2012):

$$
\argmin_{C:\mathcal{H}_{\mathcal{X}}\to\mathcal{H}_{\mathcal{Y}}} \frac{1}{n} \sum_{i=1}^n \|\phi(y_i)-C\psi(x_i)\|_{\mathcal{H}_{\mathcal{Y}}}^2 + \lambda \|C\|_{HS}^2.
$$

3 challenges for CMEs

2 strategies for optimizing the hyperparameter *σ* **Iterative Optimization:** Optimize θ and σ , through $\min_{\theta} \frac{1}{n}$ $\frac{1}{n}$ \sum *n* $_{i=1}^{n}\hat{\ell}(\theta)$ and $\min_{\sigma}\frac{1}{n}$ $\frac{1}{n}$ \sum *n* $\hat{\ell}_{i=1}^n \hat{\ell}_{SQ}(\sigma)$, iteratively every step. **Joint Optimization**: $\min_{\theta, \sigma} \frac{1}{n}$ $\frac{1}{n}$ \sum *n* $\hat{\ell}_{i=1}^n\,\hat{\ell}(\theta,\sigma)$. This is justified from the fact that $\hat{\ell}_{SQ}(\sigma) \leq \hat{\ell}(\sigma)$. Let $f = \sum_{a=1}^{M} k_{\sqrt{2}\sigma}(\cdot, \eta_a) w_a \in \mathcal{H}_{\sqrt{2}\sigma}$ and $g = \sum_{a=1}^{M} k_{\sigma}(\cdot, \eta_a) w_a \in \mathcal{H}_{\sigma}$. Then we can show that:

Proposed Method

To address the scalability and expressiveness challenges, we propose the following form:

Neural Network (NN) Based CMEs

$$
\hat{\mu}_{P(Y|X)}(x) = \sum_{a=1}^{M} \phi(\eta_a) f_a(x; \theta),
$$

where $f(x; \theta): \mathcal{X} \to \mathbb{R}^M$ represents a NN parameterized by θ , and $\eta_a \in \mathcal{Y}$ are *M* location parameters. The NN is optimized through $\min_{\theta} \frac{1}{n}$ $\frac{1}{n}$ \sum *n* $\hat{\ell}_{i=1}^n\,\hat{\ell}(\theta)$, where $\hat{\ell}(\theta)$ can be further expressed as:

 $\hat{\ell}(\theta) = -2\sum$ *a* k y $(y_i, \eta_a)f_a(x;\theta) + \sum$ *a,b* k y $(\eta_a, \eta_b)f_a(x;\theta)f_b(x;\theta).$

For k_{γ} , we adopt following positive definite kernel $k_{\sigma} \in \mathcal{H}_{\sigma}$:

$$
k_{\sigma}(y, y') = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^{d_y} \exp\left(-\frac{\|y - y'\|^2}{2\sigma^2}\right).
$$

Because this is also a smoothing kernel, we have $\hat{p}(y|x)$ = $\langle k_\sigma(y,\cdot),\hat{\mu}_{P(Y|X)}(x)\rangle$ $H_{\sigma} = \sum_{a=1}^{M} k_{\sigma}(y, \eta_a) f_a(x; \theta)$. We propose optimizing σ to minimize $\mathcal{L}_{SQ} = \frac{1}{2} \iint (\hat{p}(y|x) - p(y|x))^2 p(x) dx dy$, and obtain the empirical loss $\frac{1}{n}$ \sum *n* $\hat{\ell}_{i=1}^n \hat{\ell}_{SQ}(\sigma)$ where, $\hat{\ell}_{SQ}(\sigma) = -2\sum$ *a* $k_{\sigma}(y_i, \eta_a)f_a(x;\theta) + \sum$ *a,b* $k_{\sqrt{2}\sigma}(\eta_a, \eta_b)f_a(x;\theta)f_b(x;\theta).$

Protein $\begin{bmatrix} 0.48 \pm 0.05 & 0.55 \pm 0.17 & 1.83 \pm 0.19 & 0.80 \pm 0.07 & 0.71 \pm 0.11 \end{bmatrix}$

where $\tau_a = r + \gamma \eta_a$ and $v_a = f_a(x; \theta^-)$ which corresponds to the target network.

$$
\|f\|_{\mathcal{H}_{\sqrt{2}\sigma}} \le \|g\|_{\mathcal{H}_{\sigma}}.
$$

 ω is an element of $\mathcal{M}(\mathcal{K})$, the set of distributions over the kernels.

Experiments on Density Estimation Tasks

We evaluated on UCI datasets. For competitors:

- Deep feature approach (DF): Replace *ψ* with a *d*-dimensional NN -parameterized feature map $\psi_{\theta}: \mathcal{X} \to \mathbb{R}^d$. For bandwidth selection, used the median heuristic or fixed to 0.1.
- Diffusion based model (CARD): Combines a denoising diffusion-based conditional generative model with a pre-trained conditional mean estimator (Han+, 2022).

For evaluation mertic, we adopt QICE.We divide the generated samples into L quantile intervals with boundaries \hat{y} low*^j* $\frac{\partial w_j}{\partial i}$ and $\hat{y}_i^{\mathsf{high}_j}$. Then compute QICE $\coloneqq \frac{1}{L}$ $\frac{1}{L}$ \sum *L* $\frac{L}{j=1}$ $\left| r_j - \frac{1}{L} \right|$ $\frac{1}{L}$, where $r_j = \frac{1}{n}$ $\frac{1}{n}$ \sum *n* $\frac{n}{i=1} 1$ y_i ≥ \hat{y} low*j i* ⋅ 1 y_i ≤ \hat{y} high*j i* .

Applications to Reinforcement Learning

MDP is defined by the tuple (S, A, R, P, γ) , We represent the discounted sum of rewards received by an agent under a policy π as a random variable $Z^{\pi}(s, a) = \sum_{t=0}^{\infty} \gamma^t R(s_t, a_t)$ on space \mathcal{Z} . We propose to represent the distribution of $Z(s, a)$ using a kernel $k_z(\cdot, z) \in \mathcal{H}_z$:

$$
\mu_{P(Z|S,A)}(x) = \sum_{a=1}^M k_{\mathcal{Z}}(\cdot, \eta_a) f_a(x; \theta),
$$

where x is a tuple of state and action.

To construct a loss function in the context of deep Q-learning, we define a metric between the distribution of $R(s,a)$ + $\gamma Z\left(s^{\prime},a^{\prime}\right)$ and that of *Z*(*s, a*). Maximum Mean Discrepancy provides a principled way to measure the discrepancy between these distributions:

$$
\frac{\partial b_j}{\partial k_z} = \left\| \sum_{a=1}^{M} k_z(\cdot, \tau_a) v_a - \sum_{a=1}^{M} k_z(\cdot, \eta_a) w_a \right\|_{\mathcal{H}_z},
$$
\nwhere $\tau = r + 2\omega$, and $v = f(\omega; \theta)$ which corresponds to the

Inspired by MMD-FUSE (Biggs+, 2023) a two-sample testing method, we propose using a distribution over kernels, $k \in \mathcal{K}$, and employ the following log-sum-exp type loss function:

$$
\text{FUSE} = \log \left(\mathbb{E}_{k \sim \omega} \left[\exp(\hat{d}_{k_z}^2(\theta)) \right] \right),
$$

Joint work with Kenji Fukumizu and Dino Sejdinovic

The Institute of Statistical Mathematics