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Kernel Conditional Mean Embeddings

Kernel conditional mean embeddings (CMEs) offer a powerful frame-

work for representing conditional distributions. Let positive definite

kernels kX ∶ X × X → R and kY ∶ Y × Y → R associated with RKHSs
HX and HY , induce features ψ(x) = kX(x, ⋅) and φ(y) = kY(y, ⋅). The
empirical estimate of CMEs (Song+, 2009) is expressed as:

µ̂P (Y ∣X)(x) =
n

∑
i=1
βi(x)φ(yi) = Φβ(x),

where:

β(x) = (KX + λI)−1kX.
Alternatively, this empirical estimate can be obtained by solving fol-

lowing function-valued regression problem (Grünewälder+, 2012):

arg min
C ∶HX→HY

1
n

n

∑
i=1
∥φ(yi) −Cψ(xi)∥2HY + λ ∥C∥

2
HS .

3 challenges for CMEs

Scalability: Gram matrix inverse can become prohibitively

expensive for large dataset.

Expressiveness: Pre-specified nature of RKHS features may

lead to poor performance in practice.

Hyperparameter selection for kY : The objective function is
defined in terms of the RKHS norm associated to kY . Any
change in kernel parameter fundamentally alters the objective.

Proposed Method

To address the scalability and expressiveness challenges, we propose

the following form:

Neural Network (NN) Based CMEs

µ̂P (Y ∣X)(x) =
M

∑
a=1
φ(ηa)fa(x; θ),

where f(x; θ) ∶ X → RM represents a NN parameterized by θ, and
ηa ∈ Y are M location parameters. The NN is optimized through

minθ 1
n∑

n
i=1 ℓ̂(θ), where ℓ̂(θ) can be further expressed as:

ℓ̂(θ) = −2∑
a

kY(yi, ηa)fa(x; θ) +∑
a,b

kY(ηa, ηb)fa(x; θ)fb(x; θ).

For kY , we adopt following positive definite kernel kσ ∈ Hσ:

kσ(y, y′) = (
1√

2πσ2
)
dy

exp(−∥y − y
′∥2

2σ2 ) .

Because this is also a smoothing kernel, we have p̂(y∣x) =
⟨kσ(y, ⋅), µ̂P (Y ∣X)(x)⟩Hσ = ∑

M
a=1 kσ(y, ηa)fa(x; θ). We propose optimiz-

ing σ to minimize LSQ = 1
2∬ (p̂(y∣x) − p(y∣x))

2
p(x)dxdy, and obtain

the empirical loss 1
n∑

n
i=1 ℓ̂SQ(σ) where,

ℓ̂SQ(σ) = −2∑
a

kσ(yi, ηa)fa(x; θ) +∑
a,b

k√2σ(ηa, ηb)fa(x; θ)fb(x; θ).

2 strategies for optimizing the hyperparameter σ

Iterative Optimization: Optimize θ and σ, through
minθ 1

n∑
n
i=1 ℓ̂(θ) and minσ 1

n∑
n
i=1 ℓ̂SQ(σ), iteratively every step.

Joint Optimization: minθ,σ 1
n∑

n
i=1 ℓ̂(θ, σ). This is justified from

the fact that ℓ̂SQ(σ) ≤ ℓ̂(σ). Let f = ∑Ma=1 k√2σ(⋅, ηa)wa ∈ H√2σ
and g = ∑Ma=1 kσ(⋅, ηa)wa ∈ Hσ. Then we can show that:

∥f∥H√2σ
≤ ∥g∥Hσ.

Experiments on Density Estimation Tasks

We evaluated on UCI datasets. For competitors:

Deep feature approach (DF): Replace ψ with a d-dimensional
NN-parameterized feature map ψθ ∶ X → Rd. For bandwidth

selection, used the median heuristic or fixed to 0.1.

Diffusion based model (CARD): Combines a denoising

diffusion-based conditional generative model with a pre-trained

conditional mean estimator (Han+, 2022).

For evaluationmertic, we adopt QICE.We divide the generated sam-

ples into L quantile intervals with boundaries ŷ
lowj
i and ŷ

highj
i . Then

compute QICE ∶= 1
L∑

L
j=1 ∣rj − 1

L∣, where rj = 1
n∑

n
i=1 1

yi≥ŷ
lowj
i

⋅ 1
yi≤ŷ

highj
i

.

Dataset QICE ↓
Iterative Joint DF-med DF-0.1 CARD

Kin8nm 0.98 ± 0.29 0.91 ± 0.19 4.70 ± 0.32 2.60 ± 0.41 0.92 ± 0.25
Power 0.88 ± 0.24 0.84 ± 0.18 4.81 ± 0.33 2.91 ± 0.18 0.92 ± 0.21
Protein 0.48 ± 0.05 0.55 ± 0.17 1.83 ± 0.19 0.80 ± 0.07 0.71 ± 0.11

Applications to Reinforcement Learning

MDP is defined by the tuple (S,A,R,P, γ), We represent the dis-
counted sum of rewards received by an agent under a policy π as a
random variable Zπ(s, a) = ∑∞t=0 γtR(st, at) on space Z . We propose
to represent the distribution of Z(s, a) using a kernel kZ(⋅, z) ∈ HZ :

µP (Z ∣S,A)(x) =
M

∑
a=1
kZ(⋅, ηa)fa(x; θ),

where x is a tuple of state and action.

To construct a loss function in the context of deep Q-learning, we

define a metric between the distribution of R(s, a) + γZ (s′, a′) and
that of Z(s, a). Maximum Mean Discrepancy provides a principled
way to measure the discrepancy between these distributions:

Objective for Distributional Reinforcement Learning

d̂kZ = ∥
M

∑
a=1
kZ(⋅, τa)va −

M

∑
a=1
kZ(⋅, ηa)wa∥

HZ
,

where τa = r + γηa and va = fa(x; θ−) which corresponds to the
target network.

Inspired by MMD-FUSE (Biggs+, 2023) a two-sample testing

method, we propose using a distribution over kernels, k ∈ K, and
employ the following log-sum-exp type loss function:

FUSE = log (Ek∼ω [exp(d̂2
kZ(θ))]) ,

ω is an element ofM(K), the set of distributions over the kernels.
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