Neural-Kernel Conditional Mean Embeddings 清水瑛貴 総合研究大学院大学 統計科学専攻 博士課程(5年一貫制)4年

Kernel Conditional Mean Embeddings

Kernel conditional mean embeddings (CMEs) offer a powerful framework for representing conditional distributions. Let positive definite kernels $k_{\mathcal{X}} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ and $k_{\mathcal{Y}} : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ associated with RKHSs $\mathcal{H}_{\mathcal{X}}$ and $\mathcal{H}_{\mathcal{Y}}$, induce features $\psi(x) = k_{\mathcal{X}}(x, \cdot)$ and $\phi(y) = k_{\mathcal{Y}}(y, \cdot)$. The empirical estimate of CMEs (Song+, 2009) is expressed as:

$$\hat{\mu}_{P(Y|X)}(x) = \sum_{i=1}^n \beta_i(x)\phi(y_i) = \Phi\beta(x),$$

where:

$$\beta(x) = (K_X + \lambda I)^{-1} k_X.$$

Alternatively, this empirical estimate can be obtained by solving following function-valued regression problem (Grünewälder+, 2012):

$$\arg \min_{C:\mathcal{H}_{\mathcal{X}}\to\mathcal{H}_{\mathcal{Y}}} \frac{1}{n} \sum_{i=1}^{n} \|\phi(y_{i}) - C\psi(x_{i})\|_{\mathcal{H}_{\mathcal{Y}}}^{2} + \lambda \|C\|_{HS}^{2}$$

– 3 challenges for CMEs

 Scalability: Gram matrix inverse can become prohibitively expensive for large dataset.

Experiments on Density Estimation Tasks

We evaluated on UCI datasets. For competitors:

- Deep feature approach (DF): Replace ψ with a *d*-dimensional NN-parameterized feature map $\psi_{\theta} : \mathcal{X} \to \mathbb{R}^d$. For bandwidth selection, used the median heuristic or fixed to 0.1.
- Diffusion based model (CARD): Combines a denoising diffusion-based conditional generative model with a pre-trained conditional mean estimator (Han+, 2022).

For evaluation mertic, we adopt QICE. We divide the generated samples into L quantile intervals with boundaries $\hat{y}_i^{\text{low}_j}$ and $\hat{y}_i^{\text{high}_j}$. Then compute $\text{QICE} \coloneqq \frac{1}{L} \sum_{j=1}^{L} |r_j - \frac{1}{L}|$, where $r_j = \frac{1}{n} \sum_{i=1}^{n} 1_{y_i \ge \hat{y}_i^{\text{low}_j}} \cdot 1_{y_i \le \hat{y}_i^{\text{high}_j}}$.

Dataset	QICE↓				
	Iterative	Joint	DF-med	DF-0.1	CARD
Kin8nm	0.98 ± 0.29	0.91 ± 0.19	4.70 ± 0.32	2.60 ± 0.41	0.92 ± 0.25
Power	0.88 ± 0.24	0.84 ± 0.18	4.81 ± 0.33	2.91 ± 0.18	0.92 ± 0.21

- **Expressiveness**: Pre-specified nature of RKHS features may lead to poor performance in practice.
- Hyperparameter selection for $k_{\mathcal{Y}}$: The objective function is defined in terms of the RKHS norm associated to $k_{\mathcal{Y}}$. Any change in kernel parameter fundamentally alters the objective.

Proposed Method

To address the scalability and expressiveness challenges, we propose the following form:

– Neural Network (NN) Based CMEs

$$\hat{\mu}_{P(Y|X)}(x) = \sum_{a=1}^{M} \phi(\eta_a) f_a(x;\theta),$$

where $f(x;\theta): \mathcal{X} \to \mathbb{R}^M$ represents a NN parameterized by θ , and $\eta_a \in \mathcal{Y}$ are M location parameters. The NN is optimized through $\min_{\theta} \frac{1}{n} \sum_{i=1}^n \hat{\ell}(\theta)$, where $\hat{\ell}(\theta)$ can be further expressed as:

 $\hat{\ell}(\theta) = -2\sum_{a} k_{\mathcal{Y}}(y_i, \eta_a) f_a(x; \theta) + \sum_{a, b} k_{\mathcal{Y}}(\eta_a, \eta_b) f_a(x; \theta) f_b(x; \theta).$

For $k_{\mathcal{Y}}$, we adopt following positive definite kernel $k_{\sigma} \in \mathcal{H}_{\sigma}$:

$$k_{\sigma}(y,y') = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^{d_y} \exp\left(-\frac{\|y-y'\|^2}{2\sigma^2}\right).$$

Because this is also a smoothing kernel, we have $\hat{p}(y|x) = \langle k_{\sigma}(y,\cdot), \hat{\mu}_{P(Y|X)}(x) \rangle_{\mathcal{H}_{\sigma}} = \sum_{a=1}^{M} k_{\sigma}(y,\eta_{a}) f_{a}(x;\theta)$. We propose optimizing σ to minimize $\mathcal{L}_{SQ} = \frac{1}{2} \iint (\hat{p}(y|x) - p(y|x))^{2} p(x) dx dy$, and obtain the empirical loss $\frac{1}{n} \sum_{i=1}^{n} \hat{\ell}_{SQ}(\sigma)$ where, $\hat{\ell}_{SQ}(\sigma) = -2 \sum_{a} k_{\sigma}(y_{i},\eta_{a}) f_{a}(x;\theta) + \sum_{a,b} k_{\sqrt{2}\sigma}(\eta_{a},\eta_{b}) f_{a}(x;\theta) f_{b}(x;\theta)$. Protein 0.48 ± 0.05 0.55 ± 0.17 1.83 ± 0.19 0.80 ± 0.07 0.71 ± 0.11

Applications to Reinforcement Learning

MDP is defined by the tuple (S, A, R, P, γ) , We represent the discounted sum of rewards received by an agent under a policy π as a random variable $Z^{\pi}(s, a) = \sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t})$ on space \mathcal{Z} . We propose to represent the distribution of Z(s, a) using a kernel $k_{\mathcal{Z}}(\cdot, z) \in \mathcal{H}_{\mathcal{Z}}$:

$$\mu_{P(Z|S,A)}(x) = \sum_{a=1}^{M} k_{\mathcal{Z}}(\cdot,\eta_a) f_a(x;\theta),$$

where x is a tuple of state and action.

To construct a loss function in the context of deep Q-learning, we define a metric between the distribution of $R(s, a) + \gamma Z(s', a')$ and that of Z(s, a). Maximum Mean Discrepancy provides a principled way to measure the discrepancy between these distributions:

$$\hat{d}_{k_{z}} = \left\| \sum_{a=1}^{M} k_{z}(\cdot, \tau_{a}) v_{a} - \sum_{a=1}^{M} k_{z}(\cdot, \eta_{a}) w_{a} \right\|_{\mathcal{H}_{z}},$$
where $\tau = r + \infty$ and $w = f(x; \theta^{-})$ which corresponds to the

where $\tau_a = r + \gamma \eta_a$ and $v_a = f_a(x; \theta^-)$ which corresponds to the target network.

Inspired by MMD-FUSE (Biggs+, 2023) a two-sample testing method, we propose using a distribution over kernels, $k \in \mathcal{K}$, and employ the following log-sum-exp type loss function:

$$\mathsf{FUSE} = \log \left(\mathbb{E}_{k \sim \omega} \left[\exp(\hat{d}_{k_{z}}^{2}(\theta)) \right] \right),$$

2 strategies for optimizing the hyperparameter σ
Iterative Optimization: Optimize θ and σ, through min_θ ¹/_n Σⁿ_{i=1} ℓ(θ) and min_σ ¹/_n Σⁿ_{i=1} ℓ_{SQ}(σ), iteratively every step.
Joint Optimization: min_{θ,σ} ¹/_n Σⁿ_{i=1} ℓ(θ, σ). This is justified from the fact that ℓ_{SQ}(σ) ≤ ℓ(σ). Let f = Σ^M_{a=1} k_{√2σ}(·, η_a)w_a ∈ H_{√2σ} and g = Σ^M_{a=1} k_σ(·, η_a)w_a ∈ H_σ. Then we can show that: ||f||<sub>H_{√2σ} ≤ ||g||_{H_σ}.
</sub> ω is an element of $\mathcal{M}(\mathcal{K})$, the set of distributions over the kernels.

Joint work with Kenji Fukumizu and Dino Sejdinovic

The Institute of Statistical Mathematics