Neural-Kernel Conditional Mean Embeddings
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Kernel Conditional Mean Embeddings

Kernel conditional mean embeddings (CMEs) offer a powerful frame-
work for representing conditional distributions. Let positive definite
kernels ky : X x X - R and ky : Y x Y - R associated with RKHSs
Hy and Hy, induce features ¢(x) = ky(x,-) and ¢(y) = ky(y,-). The
empirical estimate of CMEs (Song+, 2009) is expressed as:

ﬂP(Y|X)(x) = z:ﬁz(x)(b(yz) =08(x),

where:
5(56) = (KX + )\[)_1]{){.

Alternatively, this empirical estimate can be obtained by solving fol-
lowing function-valued regression problem (Grinewalder+, 2012):

arg mm—z lo(yi) - Ciﬂ(fz)“?{ +)‘||C||HS
CH)(—>7'[3)

— 3 challenges for CMEs
= Scalability: Gram matrix inverse can become prohibitively
expensive for large dataset.

= Expressiveness: Pre-specified nature of RKHS features may
lead to poor performance in practice.

= Hyperparameter selection for ky: The objective function is
defined in terms of the RKHS norm associated to ky. Any
change in kernel parameter fundamentally alters the objective.

Proposed Method

To address the scalability and expressiveness challenges, we propose
the following form:

— Neural Network (NN) Based CMEs

ﬂP(Y|X)(35) = ; O(na) fa(;0),

where f(x;0) : X - RM represents a NN parameterized by 6, and
n. € Y are M location parameters. The NN is optimized through
ming+ Y, £(6), where £(9) can be further expressed as:

Experiments on Density Estimation Tasks

000) = =2 ky(yi, ma) falz; 0) + z; ky (M, M) fa(;0) fy(; 0).

For ky, we adopt following positive definite kernel k, € H,:

NN A TR
ko(y,y') = Word By 07|

Because this is also a smoothing kernel, we have p(ylx) =
(ka(ya )5 ﬂP(YiX)(x)>HU = Yat1 ko (y,1a) fa(;6). We propose optimiz-
ing o to minimize Lsg =1 [ (p(y|z) - p(y|z))” p(x)dzdy, and obtain
the empirical loss + Y7, ls0(o) where,

lsq(0) = =2 ko (yisna) fala:0) + Z; k3o (Nas ) fa (23 0) fo(2: 6).

— 2 strategies for optimizing the hyperparameter o
= [terative Optimization: Optimize ¢ and o, through
ming+ Y7, £(0) and min, + Y1y £sg(0), iteratively every step.
= Joint Optimization: ming,J%Z?ﬂ@(H, o). This is justified from
the fact that £50(0) < (o). Let f =¥ M, k 5,(5 Ma)wa € H g3,
and g = 22{1 ko (-, m0)w, € Hy. Then we can show that:

| £33, < 1900,
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We evaluated on UCI datasets. For competitors:

= Deep feature approach (DF): Replace 1 with a d-dimensional
NN-parameterized feature map vy : X — R?. For bandwidth
selection, used the median heuristic or fixed to O.1.

= Diffusion based model (CARD): Combines a denoising
diffusion-based conditional generative model with a pre-trained
conditional mean estimator (Han+, 2022).

For evaluation mertic, we adopt QICE. We d|V|de the generated sam-

ples into L quantile intervals with boundaries ¢ y " and yh'ghj Then
1 |
compute QICE =+ % |r; - 1|, where r; = L 37 11y2>y|ow~ : 1%3@?%.
Dataset QICE |
[terative Joint DF-med DF-0.1 CARD

KIndnm | 0.98+0.29 0.91+0.19 4.70 £ 0.32 2.60 £ 0.41 0.92 +0.25
Power | 0.88+0.24 0.84+0.18 4.81+0.33 2.91+£0.18 0.92+0.21
Protein 10.48 £+0.05 0.55+0.17 1.83+0.19 0.80+0.07 0.71 £0.11

Applications to Reinforcement Learning

MDP is defined by the tuple (S, A4, R, P,v), We represent the dis-
counted sum of rewards received by an agent under a policy w as a
random variable Z7(s,a) = > 720V R(st, a¢) on space Z. We propose
to represent the distribution of Z(s,a) using a kernel kz(+,2) € Hz:

M
MP(Z|S,A)(37) = Z; kz(w ﬁa)fa(f; 0),

where x is a tuple of state and action.

To construct a loss function in the context of deep Q-learning, we
define a metric between the distribution of R(s,a) +~vZ (s',a’") and
that of Z(s,a). Maximum Mean Discrepancy provides a principled
way to measure the discrepancy between these distributions:

— Objective for Distributional Reinforcement Learning

)

M M
- Z kz(‘, Ta)va — Z kg(', na)wa
a=1 a=1 Hz

where 1, = r + yn, and v, = f,(x;0~) which corresponds to the
target network.

Inspired by MMD-FUSE (Biggs+, 2023) a two-sample testing
method, we propose using a distribution over kernels, k € IC, and
employ the following log-sum-exp type loss function:

A2
FUSE = log (Eges [exp(d,(0))])
w is an element of M(K), the set of distributions over the kernels.
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