Evolutionary Shaping of Low-Dimensional Path Facilitates Robust and Plastic Switching Between Phenotypes

坂田 綾香

統計基盤数理研究系 准教授

Research question

Background

- ☐ Biological systems must be robust against perturbations for stable function, but robustness alone is not sufficient.
- ☐ Switching between appropriate phenotypes in response to different conditions is essential for biological functions.
 - · Allosteric enzymes, motor proteins, etc.

How are robustness and plasticity simultaneously acquired through evolution?

We need to understand

- Evolution of stability of multiple phenotypes
- Evolution of switching pathways

Allosteric regulation

- Regulatory sites distant from active sites
- Binding of modulator to regulatory sites changes the conformation of active sites

Phenotype A Switching path Phenotype B

Two patterns appear in the active sites

- When the regulatory site is turned "on", then pattern A appears in the active site.
- When the regulatory site is turned "off", then pattern B appears in the active site

Model for conformational switching

 Spin model for conformational switching that has active and regulatory sites

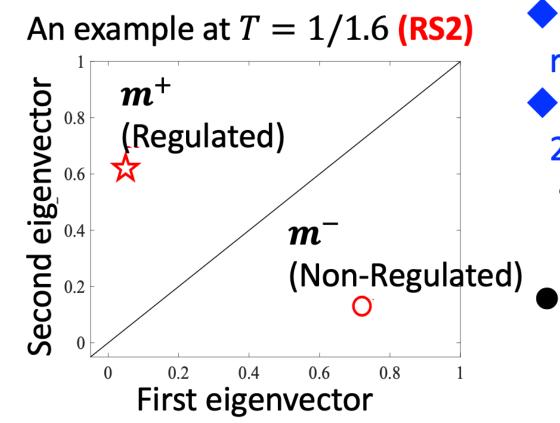
- Setting of genotype and phenotype
- We set spin configuration and interaction matrix as phenotype and genotype, respectively.
- Setting of desirable configuration depending on regulation
- Active site and regulatory site have no direct interaction.
- When a modulator binds to a regulatory site, the regulatory site takes on one of the specific configurations.
- Then, if the active site can have one of the specific configurations, the substrate can bind to the active site.

Mathematical expressions

- Spin variables (phenotype): $S \in \{-1, +1\}^N$
- Interaction matrix (genotype): $J_{ij} \in \{-1/\sqrt{N}, 0, 1/\sqrt{N}\}$
- Configuration of regulatory site under regulation: S_R^+
- Configuration of regulatory site without regulation: S_R^-
- Desirable configuration of active site under regulation: S_A^+
- Desirable configuration of active site without regulation: S_A^-
- Distribution of phenotype **S** under genotype **J**:

$$P(\mathbf{S}) \propto \exp \left\{ \beta \sum_{i < j} J_{ij} S_i S_j \right\}$$

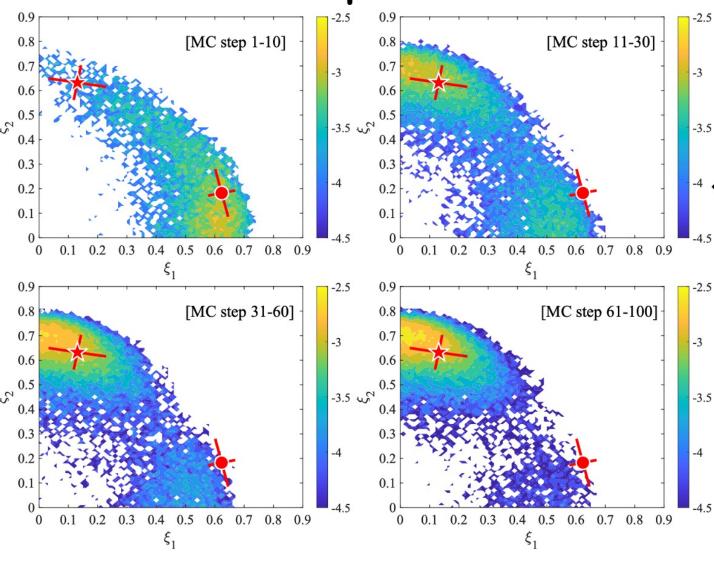
Fitness function for evolution of genotype


$$\phi(J) = \frac{1}{2} \left\{ \left| |m_t^+| \prod_{i \in \mathcal{R}} \delta_{S_i,1} \right\rangle + \left| |m_t^-| \left(1 - \prod_{i \in \mathcal{R}} \delta_{S_i,1} \right) \right| \right\}$$

$$m_t^+ = \frac{1}{N_A} \sum_{i \in \mathcal{A}} S_i S_{Ai}^+, \quad m_t^- = \frac{1}{N_A} \sum_{i \in \mathcal{A}} S_i S_{Ai}^-$$

Summary of results

- i. Fitness increases at $T = \beta^{-1} < T_0$, namely, two desirable phenotypes can appear with a high probability.
- ii. Rugged landscapes evolve at $T < T_2$ (\simeq replica symmetry breaking), and dependency on the initial condition appears.
- iii. Characteristic genotypes evolve for $T_2 < T < T_1$, which we refer to as the replica symmetric type 2 (RS2) phase.
 - Two phenotypes are assigned to two eigenmodes
 ≃ Large conformational change
 - A one-dimensional path between the two phenotypes exists → Quick switching


Phenotype expression in RS2 phase

- ◆Phenotype without regulation

 1st eigenvector
- ◆Phenotype with regulation ∝ 2nd eigenvector
 - Contributions from higher order terms are negligible
 - In addition, switching trajectories are concentrated on a one-dimensional path.

Switching trajectory in two-dimensional space

- We found that this constraint is caused by the random pattern embedded in free sites.
- ◆Although the
 free sites do not
 contribute to
 fitness explicitly,
 they are important
 for stable
 expression and
 switching.